U.S. Environmental Protection Agency Region IX # PUBLIC REVIEW DRAFT # Middle Fork Eel River Total Maximum Daily Loads for Temperature and Sediment October 15, 2003 ### **Table of Contents** ### **CHAPTER 1: INTRODUCTION** - 1.1. Watershed Characteristics - 1.2. Endangered Species Act Consultation - 1.3. Organization ### **CHAPTER 2: PROBLEM STATEMENT** - 2.1. Fish Population Problems - 2.2. Temperature Problems - 2.3. Sediment Problems - 2.4. Water Quality Standards ### **CHAPTER 3: TEMPERATURE TMDL** - 3.1. Interpreting the Existing Water Quality Standards for Temperature - 3.2. Temperature and Shade Modeling - 3.3. Water Quality Indicators and Targets - 3.4. TMDL and Allocations - 3.4.1. Loading Capacity and TMDL - 3.4.2. Allocations - 3.4.3. Margin of Safety - 3.4.4 Seasonal Variation and Critical Conditions ### **CHAPTER 4: SEDIMENT TMDL** - 4.1. Sediment Source Analysis - 4.2. Water Quality Targets - 4.2.1. Summary of Indicators and Targets - 4.3. TMDL and Allocations - 4.3.1 Loading Capacity and TMDL - 4.3.2. Allocations - 4.3.3. Margin of Safety - 4.3.4. Seasonal Variation and Critical Conditions ### CHAPTER 5: IMPLEMENTATION AND MONITORING RECOMMENDATIONS ### **CHAPTER 6: PUBLIC PARTICIPATION** ### References Appendix A QUAL2E model results report Appendix B Sediment Source Analysis - Figure 1 Watershed map - Figure 2 Fish population 1966-present - Figure 3 Temperature monitoring-hobo stations - Figure 4 Upper Black Butte Current Stream Miles in Each Temperature Category - Figure 5 North Fork Middle Fork Current Stream Miles in Each Temperature Category - Figure 6 Upper Black Butte Full Growth % Shade (allocations) - Figure 7 North Fork Middle Fork Full Growth % Shade (allocations) - Table 1 Temperature Categories - Table 2 Water Quality Standards - Table 3 Temperature Modeling Results - Table 4 Margin of Safety - Table 5 Summary of Indicators and Targets - Table 6 USFS Sediment Source Analysis Results 1985-2002 - Table 7 Regional Board Estimates of Revised Sediment Source Analysis Results 1985-2002 - Table 8 Sediment TMDL Alternative 1: TMDL and Allocations - Table 9 Sediment TMDL Alternative 2: TMDL and Allocations ### **CHAPTER 1: INTRODUCTION** ### Overview of the TMDL program The primary purpose of the Total Maximum Daily Load (TMDL) program for California's Eel River is to assure that beneficial uses of water (such as salmonid habitat) are protected from detrimental increases in sediment and temperature. The TMDLs set the maximum levels of pollutants that the waterbody can receive without exceeding water quality standards, an important step in achieving water quality standards for the Middle Fork Eel River and tributaries (including the Black Butte River) in Northern California. The major water quality problems in the Middle Fork Eel River and tributaries addressed in this report are reflected in the decline of salmon and steelhead populations. While many factors have been implicated in the decline of west coast salmon and steelhead, we are concerned here with two inland water quality considerations - increases to natural sediment and temperature patterns. The Middle Fork Eel (along with many other watersheds in California and throughout the nation) has been put on a list of "impaired" or polluted waters. In this watershed, the listing leads to the TMDL, which determines the "allowable" amount of sediment and temperature for the watershed. Development of measures to implement the TMDL is the responsibility of the State of California. ### **Background** The Middle Fork Eel River Total Maximum Daily Loads (TMDLs) for sediment and temperature are being established in accordance with Section 303(d) of the Clean Water Act, because the State of California has determined that the water quality standards for the Middle Fork Eel River are not met due to excessive sediment and temperature. In accordance with Section 303(d), the State of California periodically identifies "those waters within its boundaries for which the effluent limitations... are not stringent enough to implement any water quality standard applicable to such waters." In 1992, EPA added the Middle Fork Eel River to California's 303(d) impaired water list due to elevated sedimentation and temperature, as part of listing the entire Eel River basin. The North Coast Regional Water Quality Control Board (Regional Board) has continued to identify the Middle Fork Eel River as impaired in subsequent listing cycles, the latest in 2002. In accordance with a consent decree (Pacific Coast Federation of Fishermen's Associations, et al. v. Marcus, No. 95-4474 MHP, 11 March 1997), December 2003 is the deadline for establishment of these TMDLs. Because the State of California will not complete adoption of TMDLs for the Middle Fork Eel River by this deadline, EPA is establishing these TMDLs. The purpose of the Middle Fork Eel River TMDLs is to identify the total amount (or load) of sediment and heat that can be delivered to the Middle Fork Eel River and tributaries without exceeding water quality standards, and then to allocate the total amount among the sources of sediment or heat in the watershed. Although factors other than excessive sediment and heat in the watershed may be affecting salmonid populations (e.g., ocean conditions), these TMDLs focus on sediment and heat, the pollutants for which the Middle Fork Eel River is listed under Section 303(d). EPA expects the Regional Board to develop an implementation strategy that will result in implementing the TMDLs in accordance with the requirements of 40 CFR 130.6. The allocations, when implemented, are expected to result in achieving the applicable water quality standards for sediment and temperature for the Middle Fork Eel River and its tributaries. These TMDLs apply to the portions of the Middle Fork Eel River watershed governed by California water quality standards. They do not apply to lands under tribal jurisdiction, which include substantial areas around the Round Valley area. This is because tribal lands, as independent jurisdictions, are not subject to the State of California's water quality standards. ### 1.1 WATERSHED CHARACTERISTICS The Middle Fork Eel River watershed area is located primarily in northeast Mendocino County with smaller amounts in southern Trinity and Glenn Counties. It is east of Highway 101, approximately 150 miles northeast from San Francisco, and includes the town of Covelo. The Middle Fork Eel watershed, as defined by this TMDL, is 753 square miles in area (approx. 482,000 acres). Local use of watershed names within the Eel River area often is not consistent. This analysis includes all of the major tributaries of the Middle Fork Eel, including the Black Butte River watershed. The Upper Middle Fork Eel has also been called the Wilderness or the Middle Fork; this area is also included in the analysis. It includes the Yolla Bolly-Middle Eel Wilderness, of which about 75,000 acres (about 16% of the basin area) are within the Middle Fork Eel watershed (R. Faust, pers. comm.). Ownership of the basin is approximately 51% federally managed (Mendocino National Forest and Bureau of Land Management), 4% Round Valley Tribe and 45% private. Large ranches, smaller private lands and some industrial timber company lands in the Black Butte watershed form the mosaic of private landownership (See Figure 1). Several distinct subareas characterize the watershed. The Round Valley area is the main population center, with approximately 2,000 residents in the town of Covelo and the surrounding areas of the Round Valley tribal lands. Relatively hidden and untraveled, this beautiful, open valley is surrounded by mountains. The Round Valley area leads via dirt road into the Mendocino National Forest areas of the Yolla Bolly/Upper Middle Fork Eel Wilderness area, including parts of the Yolla Bolly Wilderness. The Black Butte River is a major tributary and lies within the Mendocino National Forest. The Elk and Thatcher Creek areas are a mix of BLM, Mendocino National Forest and private lands with a more noticeable grass, brush and oak woodlands landscape. The State hydrologic area is 111.70 (Middle Fork Eel), which is composed of Eden Valley HSA, Round Valley HSA (which approximates the USFS Elk Creek, Williams/Thatcher and Round Valley subareas), Black Butte River HSA and Wilderness HSA (which is the same as the USFS Upper Middle Fork area.) Many previous studies have characterized the Middle Fork Eel, especially for geology and sediment. The California Department of Water Resources extensively studied the basin for possible use as a dam and reservoir site during the 1960s. USFS watershed analyses have been completed for the Upper Middle Fork Eel and Black Butte River watersheds. In addition, the USGS studied sedimentation of the Eel during and after the 1964 flood. The area's geology is underlain by the Franciscan terrane that dominates most of California's North Coast. Naturally unstable, this type of geology is sensitive to human disturbance. The Middle Fork Eel watershed is relatively dry and warm, away from the influence of coastal fog. The mean maximum temperature in July in Covelo is in the mid 90's. Almost all of the estimated 40 inches of annual rainfall, with significantly more rainfall at the higher elevations, occurs between November and April. Many smaller tributaries dry up in late summer. In the winter, there is often snow at the higher elevations. Land use activities in the Middle Fork Eel include grazing and other agriculture, timber harvest, recreation and residences. Many reports have noted severe overgrazing in the past, particularly during the late 1800's and early 1900's, which led to permanent soil loss and vegetation changes (DWR, 1982; Supernowicz, 1995.) The grazing pressure at present is fairly light. The Round Valley area has been used for agriculture and grazing, although intensive, high-value row crops are also a relatively small proportion of the landscape.
Small-scale logging began around 1862 near Covelo, continuing until after World War II, when private lands were extensively cut and burned. The harvest of public lands of Mendocino National Forest began in 1958. It is estimated that 46 percent of the timbered land in the basin (23 percent of the overall land) was logged by either clear cut or partial cut from 1950 - 1981 (DWR, 1982). Changes in vegetation due to fire management are noted in many documents on the Middle Fork Eel (USDA, 1996 WA, Supernowicz, DWR, 1982.) Before the 1850s, Native Americans used fire to keep the landscape open. Early ranchers used fire for similar purposes. In addition, large natural catastrophic fires in 1865 and 1910 following several years of drought resulted in total replacement of timber stands. ### 1.2. ENDANGERED SPECIES ACT CONSULTATION EPA has initiated informal consultation with the National Marine Fisheries and the U.S. Fish and Wildlife Service on this action, under Section 7(a)(2) of the Endangered Species Act. Section 7(a)(2) states that each federal agency shall ensure that its actions are not likely to jeopardize the continued existence of any federally-listed endangered or threatened species. ### 1.3 ORGANIZATION This report is divided into 6 chapters. Chapter 2 (Problem Statement) describes the nature of the environmental problems addressed by the TMDLs. Chapter 3 (Temperature TMDL) describes results of a model used to evaluate temperature conditions in the watershed, identifies targets for stream temperatures, identifies the total load of heat that can be delivered to the Middle Fork Eel River and tributaries without exceeding water quality standards, and describes how EPA is apportioning the total load of heat. Chapter 4 (Sediment TMDL) identifies stream and watershed characteristics to be used to evaluate whether the Middle Fork Eel River is attaining water quality standards for sediment, describes what is currently understood about the sources of sediment in the watershed, identifies the total load of sediment that can be delivered to the Middle Fork Eel and its tributaries without causing exceedence of water quality standards, and describes how EPA is apportioning the total load among the sediment sources. Chapter 5 (Implementation and Monitoring Recommendations) contains recommendations to the State regarding implementation and monitoring of the TMDLs. Chapter 6 (Public Participation) describes public participation in the development of the TMDLs. In this Public Review Draft, EPA specifically calls readers' attention to alternative proposals which are set forth in both Chapter 3 (Temperature) and Chapter 4 (Sediment). EPA encourages readers to submit comments on the alternatives proposed for the TMDL (loading capacity) and allocations for both temperature and sediment. ### **CHAPTER 2: PROBLEM STATEMENT** This chapter summarizes what is known about how temperature and sediment are affecting the beneficial uses associated with the decline of the cold water salmonid fishery in the Middle Fork Eel River and tributaries. It includes a description of the water quality standards and salmonid habitat requirements related to temperature and sediment. ### 2.1. FISH POPULATION PROBLEMS Historically, the Middle Fork Eel had populations of fall-run steelhead, which enter the watershed shortly before spawning in the fall, and spring chinook and summer steelhead, which enter the watershed in the spring and summer, waiting until fall to spawn. Prior to 1955, the mainstem Middle Fork Eel provided summer habitat for spring chinook and summer steelhead, but following the 1955 and 1964 floods the spring chinook were extirpated, and summer steelhead habitat has been confined to the uppermost reaches of the mainstem and tributaries (B. McFadin, pers comm., Oct. 2003, and R. Gill, memo to J. Parish (*sic*), Oct. 9, 2003, citing Jones 2000, CDFG 1965, and Harris 1992). Population trends have been documented only for summer steelhead; population information is limited for fall-run steelhead and chinook. The available sources of information provide a picture of the decline of summer steelhead populations. Anecdotal information for chinook populations also indicates a decline. Fall steelhead distribution appears to have been stable for the last few decades, but extensive population estimates over time are not available. Below is a summary of the available information by species and subbasin. Many different habitat conditions are crucial for the survival of salmon and steelhead. Salmonid populations are affected by a number of factors, including commercial and sport harvest, adequate food, adequate cover and ocean conditions. These TMDLs focus only on the achievement of water quality standards related to sediment and temperature which will facilitate, but not guarantee, population recovery. ### Spring chinook - entire basin Spring chinook salmon (also known as king salmon) spawned historically in the lower Middle Fork Eel and at least as far upstream as the confluence of the Black Butte River. Stream surveys indicated that historically, lower reaches of Mill, Short, Williams and Elk Creeks were important chinook spawning tributaries (DWR, 1966). In 1972-1973, angler surveys in the Dos Rios area reported 21 king salmon caught (CDFG, 1972). Professional fisheries staff estimated that in 1998, the chinook population possibly numbered 40 adults in Elk Creek, 20 in Thatcher Creek, 40 in Mill Creek, and 20 in Williams Creek. This is down from anecdotal reports of thousands in the first half of the century. The same pattern is thought to have occurred in the Black Butte and Wilderness/Upper Middle Fork watersheds: only small populations (about 100 adults) were thought to exist in 1998, whereas thousands were thought to have existed historically (NMFS, 2003). As late as 1963, the California Department of Fish and Game estimated approximately 13,000 chinook spawned each year in the Middle Fork Eel River watershed (CDFG, 1965). The Round Valley Tribe may have more historical and current information on chinook populations; however, the data are not available to EPA for these TMDLs. The streams around Round Valley may have had 5,000 chinook migrants in the early 1960s (USFS, 1994). However, chinook are rarely found in the area today. ### Summer Steelhead -Upper Middle Fork/Wilderness The Wilderness/Upper Middle Fork Eel subarea contains one of the only populations of summer steelhead in California's coast range. Population trend information has been collected by California Department of Fish and Game from 1966 to the present (Figure 2). A recent draft statistical analysis of the data from 1966-2002 (NMFS, 2003) found that the population trend is downward in both the long and the short term. This downward trend does not include the possibly far greater numbers of adult summer steelhead that existed before the 1964 flood, which were thought to exceed 3,500 adults (CDFG, 1980). DFG has also estimated that juvenile standing crops at two sites in the summer steelhead area in the upper (Fern Point) and lower (Osborne) areas from 1980-present are low compared to the recent past. Electroshocking of juvenile steelhead populations in the North Fork of the Middle Fork and its tributaries of Rock, Morrison and Willow Creeks conducted by Brown (1976) estimated that biomass averaged 21 g/m³ on Rock Creek to 12.3 g/m³ on the North Fork of the Middle Fork. In 1986-88, Brown & Moyle (1988) concluded that trout were abundant in the upper part of the drainage; but in the lower portion of the drainage, trout were only present in cool tributary streams, in areas below the confluence of a cool tributary, or in well shaded streams. This type of break in salmonid abundance occurred below Osborne Roughs on the Middle Fork Eel River. ### Fall Steelhead - Black Butte During the early 1960's, DWR observed that "steelhead spawn in virtually all of the tributaries of the Middle Fork upstream to at least Haynes Delight which was the upstream limit of the stream surveys (DWR, 1966)." In 1986-88, steelhead were abundant in cool, well-shaded sites in the upper reaches. Downstream sites were progressively more open and water temperatures higher. Near Baldy Creek, steelhead began utilizing cool tributary water and shady areas. Trout became more restricted to such areas and declined in abundance at sites that were further downstream (Brown & Moyle, 1988.) The California Department of Fish and Game estimated approximately 23,000 steelhead spawned each year in the Middle Fork Eel River watershed in 1963, but they did not distinguish between the summer and fall runs (CDFG, 1965). ### 2.2. STREAM TEMPERATURE PROBLEMS This section presents the available information on stream temperature problems for salmonids in the Middle Fork Eel and tributaries. Stream temperature directly governs almost every aspect of the survival of Pacific Salmon (Berman, 1998). Temperature is such an important requirement that coho, steelhead, chinook and rainbow trout are known as "cold water fish." Metabolism, food requirements, growth rates, timing of adult migration upstream, timing of juvenile migration downstream, sensitivity to disease and direct lethal effects are affected by stream temperatures (Spence et al, 1996.) Stream temperatures are generally marginal to inadequate for summer rearing salmonids in the Middle Fork Eel River and tributaries, although a few tributaries have adequate conditions. Much of the length of the exposed main channels are close to lethal during the hottest part of the summer. The most sensitive period is summer, when young salmonids are growing before migrating to the ocean and stream temperatures are hottest. Thus, this is the period analyzed in the temperature TMDL. The criteria evaluated in the TMDL is the MWAT, or Maximum Weekly Average Temperature, unless otherwise indicated. MWAT is calculated here as the maximum value of the 7-day running average of all recorded
temperatures (monitors often make hourly measurements). This widely used temperature parameter helps to summarize the general trend of stream temperatures, which fluctuate daily and seasonally. The term MWAT is not always used consistently. For example, the State of Oregon defines MWAT as the maximum week of the daily maximum. In addition, the term MWAT is occasionally used to denote a threshold of concern. EPA evaluated the condition of stream temperatures based on extensive scientific literature on salmonids and stream temperatures. Stream temperature data were collected by EPA and others from field measurements for modeled tributaries. The literature on which this evaluation is based has tested salmonid response in both the laboratory and the field. (For a thorough review of the scientific literature please see information from scientific panels in the States of Oregon and Washington in ODEQ, 1995; WDOE, 2000; EPA Region 10, 2001a&b; Sullivan et al., 2000.) This TMDL uses five temperature ranges based on steelhead temperature tolerances derived from the literature to categorize the quality of summer stream habitat in regard to temperature (see Table 1). This TMDL focuses on steelhead temperature tolerances because chinook are not present in the summer and coho are not found in the watershed. Human activities in the watershed, such as harvesting trees in riparian areas, are likely factors contributing to the high temperatures in the stream. Temperatures that are consistently too hot for salmonids may have contributed, along with other factors, to population declines. The MWAT is used to determine the hottest period of the year. These temperature ranges are not perfectly precise in the stream, because salmonids are affected by several factors, including fluctuations in temperature, mean temperatures, food supplies and access to cool water areas (refugia). In addition, steelhead may likely respond gradually to sublethal temperatures with effects such as reduced growth; they are not likely to have clear thresholds in the natural environment. **Table 1 Summer Stream Temperatures (in MWAT) to Evaluate Steelhead Rearing Conditions** | GOOD CONDITIONS | <15° C (59° F) | |-----------------|------------------------| | ADEQUATE | 15-16.99° C (59-63° F) | | MARGINAL | 17-18.99° C (63-66° F) | | INADEQUATE | 19-23.99° C (63-75° F) | | LETHAL | ≥ 24° C (75° F) | ### **Current stream temperatures** Measurements of summer stream temperature conditions for steelhead are available for approximately 40 locations throughout the Middle Fork Eel, particularly in 1996 - 1998 and 2002 from the CDFG and USEPA. Figure 3 shows the results of the monitoring. Many locations in the Middle Fork Eel basin are known to have variable temperature conditions for summering juveniles. Most of the larger stream channels that were monitored had inadequate conditions, while a few have lethal conditions. By contrast, the upper areas of many tributaries provide adequate (15-17° C) to marginal (17-19° C) conditions. There were a few locations that provide good conditions. This indicates that current conditions for salmonids are less than ideal, but the basin is not among the worst for temperature conditions in the North Coast. Salmonids could certainly benefit from refugia such as large pools in the main channels, and adequate access to tributaries to use as refugia during the hottest months. ### **Historical Trends** Evaluating historical trends can give us a better idea of how much human activities may have influenced high summer temperatures, or whether high temperatures are also to be expected under natural conditions in the stream. Long-term trends in stream temperatures can only be evaluated for the main channels of the Middle Fork Eel; historic temperatures are not known for tributaries. However, even the data available for the main channels are limited. Only a general picture of stream temperatures over time can be presented here; marginal changes cannot be examined due to differences in yearly weather patterns, placement of monitors, and data reporting. Two major historical records exist in the Middle Fork Eel: the 1959 stream temperature information described by Smith & Elwell and the 1973 stream temperatures by Kubicek (1977). In general, the current temperature patterns in the basin (1996-1998 and 2002) are similar to historical patterns (1961 and 1973); that is, adequate in the summer only in the uppermost headwaters, some tributaries, and the mainstem area upstream of Osborn Station. Lethal conditions were found currently and historically in lower Black Butte River and the entire Middle Fork Eel downstream of Buck Creek. In addition, most tributaries in the Round Valley and Elk/Thatcher areas are dry except in their uppermost portions. Since some lethal temperatures in the larger main channels were also found historically when fish populations appeared stable, EPA concludes that lethal conditions on most of the mainstem did not significantly affect salmonid populations; however, it is possible that tributaries, as well as shaded pools along the mainstem, provided adequate refugia in the summer. However, even the historic data that are available are not extensive. Details of the historical and current stream temperature monitoring follow. The area of the Middle Fork River 0.5 miles upstream of the Black Butte River had maximum temperatures that were lethal (28° C) during 1958 and 1959; similar maximum temperatures existed in 1973 (Kubicek, 1977) and 1996 as well. The MWAT was 25° C. This area appears to have been consistently too hot for salmonids during the summer, both historically and currently. One stream temperature measurement taken at 2:30 p.m. during the summer of 1973 in lower Black Butte was lethal (27° C). Similar daily maximum temperatures during 2002 were noted: the daily maximum temperature was above 26° C for the entire month of July, and was occasionally above 28° C (although the 2:30 PM temperature was often less than the daily maximum). The diurnal swing in temperatures in July was approximately 4-5° C. The MWAT at this site was 25° C during 2002. Jumpoff Creek in 1973 was measured at 17° C, and in 2002 in Jumpoff Creek upstream of this location, maximum temperature was rarely above 17° C. This location was interesting in that the diurnal swing was only 2° C, and the MWAT was 16° C (adequate for steelhead). Jumpoff Creek was noted in 1973 to have abundant juveniles up to 10 inches in length. The area of the main channel of the Middle Fork Eel below Black Butte River historically had lethal summer temperatures; researchers noted that "until the end of June, salmonids were observed throughout the lower portion of the stream (Middle Fork Eel), and nongame fish appeared to be absent. As stream temperatures rose to lethal levels in July, salmonids disappeared. As temperatures decreased in September, salmonids were found to be distributed again throughout the lower portion of the Middle Fork, and nongame fish again became scarce" (Smith & Elwel as cited in Kubicek, 1977). These lethal historical conditions are consistent with more recently monitored temperatures; in 1996, the Middle Fork Eel above Thatcher had an MWAT of 26-27° C. Thus, temperatures in the exposed main channels appear to have been fairly stable and generally lethal over time in the hottest summer months. This is not necessarily true of smaller channels, where shade is a more important variable. The smaller channels probably provided cooler conditions for the fish to escape to during the warmest periods. It is likely that because the mainstem channels were always almost completely exposed, shade was a less important factor in these channels than in tributaries. Riparian vegetation can have a greater effect on smaller channels than on mainstem channels; however, we have little historical information on the temperatures in these types of channels. The main channels were also noted historically to have areas of cooler water known as refugia (from pools, groundwater seeps and intergravel flow) that provided habitat. These areas may have helped to preserve natural groundwater temperatures. We do not have information about the temperatures or characteristics of such pools. Although we do not have historical data for the tributaries, we consider it likely that, over time and with increased human disturbance to the riparian zone, the tributary areas have been subject to increased temperatures, which likely contributed to salmonid population declines. (See discussion of temperature modeling in Section 3.2 below.) ### Refugia Pools can provide important thermal refugia for salmonids. Stratified pools can provide a much-needed refuge in hot periods of the day and during the hottest times of the year. Nielsen & Lisle (1994) noted that cold pockets "were consistently about 3.5° C cooler than surface water and as great as 7.8° C cooler" in the Middle Fork Eel. The Department of Fish and Game's temperature monitoring also illustrates the importance of pools as temperature refugia. For example, the pool in the Middle Fork Eel at Rattlesnake Creek was generally between 4-8° C cooler than the riffle at the same location. In addition, the pool was rarely above 19° C, whereas the riffle was almost always above 19° C, which is in the inadequate range. A similar but much less pronounced pattern was found at Fern Point pool and riffle. There was a much smaller difference between the pool and riffle at Osborne roughs. In addition, there appear to be several groundwater-dominated tributaries where stream temperatures are consistently low. Monitoring locations in Shield Creek (MWAT of 14° C) and both Jumpoff and Smokehouse Creeks (MWAT 16° C) appear to provide cool conditions, possibly because of the existence of springs in the area. These cooler-water areas probably contributed historically, and may contribute even more significantly today, since temperatures appear to be warmer, to
conditions that support salmonids despite lethal temperatures in the mainstem reaches. ### 2.3. SEDIMENT PROBLEMS ### Salmon requirements related to stream sediment This section presents available information related to sediment problems in streams in the Middle Fork Eel and tributaries. Salmonids have a variety of requirements related to sediment. Salmonids have different water quality and habitat requirements at different life stages (spawning, egg development, juveniles, adults). Sediment of appropriate quality and quantity is needed for redd (i.e., salmon nest) construction, spawning, and embryo development. Excessive amounts of sediment or changes in size distribution (e.g., increased fine sediment) can adversely affect salmonid development and habitat. Excessive fine sediment can reduce egg and embryo survival and juvenile salmonid development. Tappel and Bjornn (1983) found that embryo survival decreases as the amount of fine sediment increases. Excess fine sediment can prevent adequate water flow through salmon redds, which is critical for maintaining adequate oxygen levels and removing metabolic wastes. Deposits of these finer sediments can also prevent the hatching fry from emerging from the redd, resulting in smothering. Excess fine sediment can cause gravels in the water body to become embedded (i.e., the fine sediment surrounds and packs in against the gravels), which effectively cements them into the channel bottom. Embeddedness can also prevent the spawning salmon from building redds. An imbalance between fine or coarse sediment supply and transport can also adversely affect the quality and availability of salmonid habitat by changing the morphology of the stream. It can reduce overall stream depth and the availability of shelter, and it can reduce the frequency, volume, and depth of pools. Pools provide salmon a resting location and protection from predators. In the Middle Fork Eel, pools are often the only place juvenile steelhead are found in the summer, as steelhead leave areas with high temperatures. Excessive sediment can affect other factors important to salmonids. Stream temperatures can increase as a result of stream widening and pool filling. The abundance of invertebrates, a primary food source for juvenile salmonids, can be reduced by excessive fine sediment. Large woody debris, which provides shelter and supports food sources, can be buried. Increased sediment delivery can also result in elevated turbidity, which is highly correlated with increased suspended sediment concentrations. Increases in turbidity or suspended sediment can impair growth by reducing availability or visibility of food sources, and the suspended sediment can cause direct damage to the fish by clogging gills. ### **Sediment conditions in the Middle Fork Eel** ### **Historical trends** Local residents and fisheries investigations report large changes to stream channels, particularly after the 1964 flood. Human activities in the watershed may have increased the severity of that flood on sediment conditions in the streams. CDFG personnel (Jones, 1992) reported that after the 1964 flood, the area used by summer steelhead – the Upper Middle Fork/Wilderness area – was filled with rock, gravel, and sand to a depth of 3-12 meters (10-40 feet). Pools previously used for summer holding areas (for summer steelhead) were almost entirely obliterated. Information on fine sediment conditions was not available. ### **Current conditions & evaluation of stream recovery** EPA reviewed the recovery of the channel after the 1964 flood. Findings are summarized below. ### Upper Middle Fork/Wilderness Recovery of the channel in the summer steelhead area (the Upper Middle Fork Eel) was noted by Mendocino National Forest staff as early as the mid-1970's in photos of the area. These professional assessments did not include measurements. In addition, Mendocino National Forest did a cursory review of the historic (1961) and current (1993) photos, noting that the Middle Fork near Buck Creek appears to look nearly the same in 1993 as in 1961. Department of Fish and Game personnel (as cited in DWR, 1982), noted that after the 1964 flood, the area from the Eel River Work Station to the Balm of Gilead had filled with sediment "so deep and evenly deposited that it was possible to drive a truck up most of the stream channel... By 1972, the channel had scoured through most of these deposits, and the river flowed at pre-flood channel elevations. Some of the flood deposits remain as terraces" (DWR, 1982). A general picture of sediment substrate conditions by Mendocino National Forest staff during stream surveys also shows a channel that has a low percentage of the stream length with fine sediment deposits, based on visual observations. In the area stretching from the Upper Middle Fork down to the confluence with the North Fork, 10% of the stream length had sand or fine sediment deposits; the rest of the length was in bedrock, boulder or cobble bottom. The area downstream to the confluence had about 15% in sand and fines. While this assessment is limited in value since it is based on visual observations, it does suggest that fine sediment deposition in the stream does not appear to dominate the stream system. In addition, while a visual evaluation cannot eliminate fine sediment as a problem for egg and embryo survival, it may be reasonable to assume that fine sediment is not a problem in pool filling or channel morphology changes; thus, it is unlikely to be compounding the temperature problems in the basin. Portions of this area are managed as wilderness, meaning that there would be no activities that contribute to sediment production at a rate higher than would exist under natural conditions. Much of this area appears to have recovered from the adverse effects of the 1964 flood. ### Black Butte River The Black Butte River was greatly affected by the 1964 flood as well. The 1964 flood caused the Black Butte River to become braided downstream of Butte Creek. At the gaging station, one-half mile above the mouth, the channel aggraded 8 feet. A measurement in 1975 showed that 6 feet of this sediment had been washed out (Lisle, 1981). A follow-up measurement in 1986 found that 4.5 feet of new sediment had been deposited at the gaging station since 1974. The 1986 sediment level is 6.5 feet above the 1963 level (Nolan et al., in USDA Forest Service, 1996). A more recent look at aerial photos shows that the recovery from the 1964 flood is still not complete; the Black Butte Creek near Nebo Creek shows wider gravel bars, more meandering due to less channel gradient, and less riparian vegetation in 1993 than 1961. The Department of Fish and Game conducted extensive surveys of the streams in the Middle Fork Eel and tributaries during the summer of 2002. Most of these results are not yet available. The USFS, as part of its Aquatic and Riparian Effectiveness Monitoring Program, sampled 6 randomly selected stream reaches in the Black Butte watershed using stream substrate bulk core samplers. The resulting D50 and percent fines data show variable results: two sites with good conditions, one site with poor conditions and three sites in the middle range. This type of random selection monitoring is designed to portray overall conditions. Given that some areas of Black Butte River appear to remain degraded from 1964 flood conditions, it is reasonable to assume that sediment continues to adversely affect beneficial uses in this subwatershed; it is also possible that sediment has filled some of the pools that could provide refugia in the summer. In summary, data regarding historical or current conditions for many streams in the Middle Fork Eel are not readily available. The information that does exist indicates that the Upper Middle Fork Eel has recovered somewhat from the drastic effects of the 1964 flood. The response reaches of the Black Butte do not appear to have recovered fully. Conditions in most other areas are unknown, although CDFG stream inventory reports that will be available in the future may provide information on current conditions. However, it is likely that the widespread sedimentation and channel changes that occurred following the 1964 flood provided difficult conditions for salmonid survival (e.g., higher proportions of fine sediment, filling of pools, etc.). It is also possible that other areas of the watershed have sufficiently recovered, particularly considering that in some parts of the watershed, little management activity is taking place and anecdotal information suggests that water quality conditions relative to sediment are probably good. ### 2.4. WATER QUALITY STANDARDS In accordance with the Clean Water Act, TMDLs are set at levels necessary to achieve the applicable water quality standards. Under the federal Clean Water Act, water quality standards consist of designated uses, water quality criteria to protect the uses, and an antidegradation policy. The State of California uses slightly different language (i.e., beneficial uses, water quality objectives, and a non-degradation policy). This section describes the State water quality standards applicable to the Middle Fork Eel River TMDL using the State's terminology. The remainder of this document simply refers to water quality standards. The beneficial uses and water quality objectives for the Middle Fork Eel River are contained in the Water Quality Control Plan for the North Coast Region (Basin Plan), as amended (NCRWQCB 2001). The Basin Plan identifies many beneficial uses for the Middle Fork Eel River, specifically: Municipal and Domestic Supply; Agricultural Supply; Industrial Process Supply; Groundwater Recharge; Water Contact Recreation; Non-contact Water Recreation; Commercial and Sport Fishing; Cold Freshwater Habitat; Rare, Threatened or Endangered Species; Migration of Aquatic Organisms; and Spawning, Reproduction and/or Early Development. The water quality objectives pertinent
to the Middle Fork Eel River temperature and sediment TMDLs are listed in Table 2. **Table 2. Water Quality Objectives** | Parameter | Water Quality Objectives | | |-----------------------|--|--| | Suspended
Material | Waters shall not contain suspended material in concentrations that cause nuisance or adversely affect beneficial uses. | | | Settleable Material | Waters shall not contain substances in concentrations that result in deposition of material that causes nuisance or adversely affect beneficial uses. | | | Sediment | The suspended sediment load and suspended sediment discharge rate of surface water shall not be altered in such a manner as to cause nuisance or adversely affect beneficial uses. | | | Temperature | The natural receiving water temperature of intrastate waters shall not be altered unless it can be demonstrated to the satisfaction of the Regional Water Board that such an alteration in temperature does not adversely affect beneficial uses. | | | | At no time or place shall the temperature of any COLD (water with a beneficial use of cold freshwater habitat) water be increased by more than 5 °F above natural receiving water temperature . | | | Turbidity | Turbidity shall not be increased more than 20 percent above naturally occurring background levels. Allowable zones of dilution within which higher percentages can be tolerated may be defined for specific discharges upon the issuance of discharge permits or waiver thereof. | | In addition to water quality objectives, the Basin Plan includes two prohibitions specifically applicable to logging, construction, and other associated sediment producing nonpoint source activities: - the discharge of soil, silt, bark, sawdust, or other organic and earthen material from any logging, construction, or associated activity of whatever nature into any stream or watercourse in the basin in quantities deleterious to fish, wildlife, or other beneficial uses is prohibited; and - the placing or disposal of soil, silt, bark, slash, sawdust, or other organic and earthen material from any logging, construction, or associated activity of whatever nature at locations where such material could pass into any stream or watercourse in the basin in quantities which could be deleterious to fish, wildlife, or other beneficial uses is prohibited. ### **CHAPTER 3: TEMPERATURE TMDL** ### **Summary** The analysis conducted for the TMDL (see Appendix A) concludes that shade is important for the protection of summer stream temperatures in the Middle Fork Eel basin, particularly in the tributaries. Water quality standards for temperature require that there be no alteration to natural temperatures. Therefore, for most of the basin, EPA concludes that meeting the water quality standard of not altering natural stream temperatures requires that there be no human-caused changes to "natural" shade. EPA's analysis, which is summarized in this section and described in more detail in Appendix A, determined the conditions required to meet water quality standards by modeling two representative tributary watersheds. It found that changes in the sizes of conifers (and thus shade) affect the stream temperatures and thus quality of fish habitat, and are important to assuring that salmonids (the most sensitive beneficial use in the basin) are not adversely affected by changes in natural stream temperatures in the Middle Fork Eel and tributaries. This chapter presents information pertinent to the temperature TMDL for the Middle Fork Eel in several sections. Section 3.1 provides EPA's interpretation of the water quality standards for the temperature TMDL. Section 3.2 describes the modeling that was conducted to examine the role streamside vegetation plays in stream temperature changes. Section 3.3 describes water quality targets. Section 3.4 presents the TMDL and allocations. # 3.1. INTERPRETING THE EXISTING WATER QUALITY STANDARDS FOR TEMPERATURE This temperature TMDL is set to attain the applicable water quality standards. The Basin Plan identifies the following two temperature objectives for surface water: "The natural receiving water temperature of intrastate waters shall not be altered unless it can be demonstrated to the satisfaction of the Regional Water Board that such an alteration in temperature does not adversely affect beneficial uses." "At no time or place shall the temperature of any COLD <i.e. water with a beneficial use of cold freshwater habitat> water be increased by more than 5 degree F above natural receiving water temperature." EPA interpreted the above standards for the TMDL as follows. In considering the first objective, EPA examined whether alterations from natural temperature conditions would adversely affect the most sensitive beneficial use - that is, cold water fish during the summer rearing period. EPA modeled natural stream temperatures (based on assumptions regarding the sizes of conifers if they were allowed to grow fully), current stream temperatures (based on existing vegetation mapping and assumptions of size distributions of trees), and stream temperatures under two different management scenarios (based on assumptions of sizes under Forest Practice Rules), then compared the distribution of habitat available under these different conditions. The temperature conditions for salmon (by stream miles) varied from adequate to marginal to inadequate (see Table 1 for an explanation of temperature ranges). In this way, EPA interpreted whether changes to shade conditions, and thus changes to water temperature, have the potential to adversely affect beneficial uses as specified in the State's water quality standard. EPA's conclusion, as described further in the next section, is that decreased shade, and associated increases in water temperature, would adversely affect the cold water fishery beneficial use. Thus, EPA concluded that the TMDL should be set at the level necessary to attain natural temperature conditions. Attaining the water quality standard for temperature would require attainment of natural temperature conditions, particularly considering that summer temperatures in most locations in the Middle Fork Eel basin are far from ideal for salmonids, even, apparently, under natural conditions. Accordingly, achieving the water quality standard, as interpreted in this TMDL, requires no alterations to natural stream temperatures. Because meeting this first objective will also result in meeting the second objective (i.e., not increasing the stream temperature more than 5 degrees F), this TMDL is designed to meet the first objective. ### **Examining the Role of Shade on Summer Stream Temperatures** Factors that could affect stream temperature include solar radiation, shading, weather conditions, air temperature, stream flow and depth, spring inflow, snowmelt etc. Although stream temperatures could be affected by any of these factors, shade is the factor in the Middle Fork Eel basin that is most likely to be altered by human activities from natural conditions; thus, the TMDL focuses on shade. The Middle Fork Eel does not have discharges of cooling water from industries, large water diversions, agricultural return flows nor dams. Only smaller diversions are present and, given the low population density, these are assumed to be insignificant. Alterations to shade in the Middle Fork Eel basin occur primarily through changes in streamside vegetation (i.e., riparian vegetation) or through stream widening. The modeling done in support of TMDL development examines the effects of changes in the size of riparian vegetation, especially conifers. The model uses existing stream widths, because information from photos shows that, except for areas of lower Black Butte, many streams areas have returned to pre-1964 conditions. In other cases, no information was available. ### 3.2. TEMPERATURE AND SHADE MODELING ### Investigating the Influences of Shade with QUAL2E/Shade Model EPA funded Tetra Tech to model the influences of shade in the Middle Fork Eel basin. Appendix A is a more detailed and technical discussion of the model and data used. Stream temperature modeling is a well-developed area of inquiry and has been used throughout the Pacific Northwest. QUAL2E, which has been peer reviewed and is publicly available, was refined with a shade element to investigate shade influences on stream temperatures in the Middle Fork Eel. Two tributaries were modeled—the North Fork of the Middle Fork and the Uppermost Black Butte/Jumpoff Creek areas—to determine whether changes in shade are affecting stream temperatures and whether the extent of these changes adversely affects beneficial uses. Data were sufficient to model these areas completely. These two subareas are representative of most of the streams that do not dry out in the summer in the watershed, in terms of vegetation distribution, land use and ownership, so they can serve as a surrogate for tributaries throughout the entire watershed. Mainstem reaches were not specifically modeled, and they require a different analysis, as is discussed below in Section 3.3. Inputs to the model include watershed location (e.g., latitude and longitude), global solar radiation (essentially, the radiation above the treetops and topography for the duration of the simulation, which is the source of heat), stream coordinates of all sampling points, wetted stream width, average depth, topographic shading characteristics (angles from 12 standard azimuth directions), and vegetation shading characteristics (distance from edge of stream to riparian buffer, average absolute height of vegetation canopy, average height of the vegetation canopy with respect to the stream surface, and average canopy
density). ### **Modeling Heat and Translating Heat to Shade** The model uses heat (the pollutant under the TMDL) expressed in langleys/day (ly/day), and translates the heat load to temperature and shade, which are measurements that can be made directly by land managers. Heat is determined by estimating global solar radiation and estimating reductions to global solar radiation from factors such as topography and vegetation shading characteristics. This reduction of heat from global solar radiation to heat at the stream surface can be expressed approximately as a % shade over the stream: With no shade, heat would equal global solar radiation. With 50% shade, half of the global solar radiation would reach the stream. Heat that thus reaches the stream is translated to temperature using factors such as width and depth of the stream and temperature of incoming water. The model routes the temperatures through the stream network, to account for cumulative effects of upstream temperatures. Five scenarios were modeled to determine the changes to stream temperatures and beneficial uses of summer rearing habitat quality. The only factor that was varied was vegetation size, the size of conifers being the most influential factor. Size of vegetation in the dataset is given a diameter at breast height (dbh), as the model uses height (computed from dbh) to calculate shade characteristics over the stream surface. Appendix A describes the equations used to convert dbh to height. The existing vegetation dataset was recently completed by the USFS and has not yet undergone a planned review. However, this data was more recently developed than the CALVEG dataset and USFS determined that it is more accurate. The scenarios that were modeled are as follows: - **1 Current condition.** This scenario uses the current size of vegetation as provided by the USFS data. For USFS lands, the current condition in these streams is the result of a decade under the Northwest Forest Plan (NWFP), which has "no cut" buffers surrounding the streams. - **2 No trees- topographical shading only.** This scenario was chosen to illustrate the importance that shade has in this watershed; it is not meant to reflect current or future conditions. In this scenario, the only shade over the stream is from unvegetated topography such as adjacent hillslopes. All existing trees were eliminated from the model for the purposes of this scenario. - **3 18 inch dbh conifer-maximum likely private timber management.** Silvicultural management styles vary amongst different ownerships. There is a wide variety of harvesting cycles and techniques in the Mendocino County area, even within the Eel area (Hope, Feiler, personal communications). Management practices under the State's Forest Practice rules result in a variety of sizes of trees left in the riparian zone after harvesting, so it is difficult to generalize with any precision about the projected future condition based on the State's Forest Practice rules. Theoretically, an owner can harvest all trees as small as 12 inch dbh under the Forest Practice Rules, but generally it is not economical to do so. This scenario represents the likely maximum harvest in the subbasin if all lands were under private timber management (Feiler, Hope, personal communications). Thus, EPA looked at this case to represent the likely most extreme results if timber harvest were privately managed. - **4 24 inch dbh conifer-alternative timber management.** Given the variety of private timberland management styles, EPA also modeled a stand of 24 inch dbh conifers as another possible representation of future conditions under basinwide private timber management. - **5 48 inch dbh conifer natural full growth conditions.** While it is difficult to generalize on the natural size of conifers, given the range of site conditions, elevation and species, 48 inch dbh conifers adequately represent "natural" growth for the purposes of determining shade. EPA reviewed available information from the USFS files and personnel, which suggests that a 48 inch dbh reasonably represents old growth. In the model, cumulative effects are taken into account by routing stream temperatures downstream through the system, accounting for local conditions (upstream temperature, shade conditions, topographical conditions, solar radiation) along the way. Table 3 displays the number of stream miles in each of the temperature categories, the shade-adjusted solar radiation, and the % shade for each of the scenarios for the two subbasins. (% shade is calculated as a proportion of the solar radiation that is blocked from global solar radiation.) Figures 4 and 5 show the number of stream miles in each category visually for the two subbasins. Appendix C includes maps with these results shown along the stream networks. The modeling results indicate that current conditions in the tributaries are primarily either adequate (15-17° C) or marginal(17-19° C); neither good conditions ($<15^{\circ}$ C) nor lethal conditions (\ge 24° C) were found in the modeling results (which is also supported by limited observation data). The effects of cooler springs on local conditions would not have been shown in modeling results. The monitoring data did show that a few streams, which were thought to have abundant springs, had good conditions. These streams were not in the watersheds modeled. Current conditions do appear to have increased stream temperatures over natural conditions. On average, the model indicates that current conditions have degraded slightly from natural conditions, with an increase of about 3 miles of stream length in adequate and marginal categories, and an increase of about 3 miles in the inadequate category (Table 3). This is not a huge alteration of natural conditions: it is slightly more than 5% of the total length of stream with degraded habitat. The topographical shading scenario illustrates the changes from current conditions that would result if shading from trees was absent entirely. This models the extreme case, if all vegetation were completely removed from the watershed. Without vegetation shade, salmonid conditions would be far worse than current conditions: in the North Fork Middle Fork, stream miles in the inadequate category would nearly triple over current conditions, from 7.8 to 21.4 miles, while those in the marginal category would decrease by about 75%, from 16.5 miles to 3.7 miles. In Upper Black Butte, stream length in the adequate category would decrease by 75%, from nearly 20 miles to less than five miles, without vegetative shading. Stream lengths in the inadequate category (19-24° C) would increase from less than 4 miles to over 55 miles. What this shows is that vegetation shade is critical for protecting cool temperatures in the tributaries. Interestingly, the model does not predict lethal temperatures in tributaries in either subbasin, even with no vegetation present. This may be the result of a combination of factors such as the existing stream orientation, steep topography and amount of sky openness. The basin topography is generally steep enough near these types of tributary streams so that some shading is available during the day. Increased sizes of conifers in the tributaries over the topographic shading only scenario provides improvements in conditions for salmonids. For example, in the Upper Black Butte subarea, going from topographic shading to an 18" dbh tree would increase the stream length in adequate conditions nearly four-fold, and eliminate all but about 10% of the total stream length in the inadequate category. Improvements in the North Fork Middle Fork subarea are not as dramatic, but still noteworthy. Small, incremental improvements (e.g., a mile or two from the inadequate category into the adequate category) are seen when the tree size is increased from 18" dbh to 24" dbh. Current conditions are somewhat better than conditions under the 18-24" dbh scenarios, which suggests that current management is somewhat better than what would be expected if the entire basin were privately owned and managed for timber production under the current Forest Practice Rules. It is likely that Forest Service management under the NWFP is largely responsible for this result. **Table 3. Temperature Modeling Results** ### **Upper Black Butte Subbasin** Number of Stream Miles in Each Temperature Category | Temperature Category | Current
Conditions | % of
Total | No Trees
/Shading | 18''
dbh | 24''
dbh | Full Growth
48''dbh | % of
Total | |-----------------------------------|-----------------------|---------------|----------------------|-------------|-------------|------------------------|---------------| | | | | | | | | | | Good (MWAT $< 15^{\circ}$ C) | 0.0 | 0% | 0.0 | 0.0 | 0.0 | 0.0 | 0% | | Adequate (15° C < MWAT < 17° C) | 19.9 | 24% | 4.7 | 18.0 | 19.3 | 23.3 | 28% | | Marginal (17° C < MWAT < 19° C) | 59.7 | 72% | 22.7 | 56.9 | 56.5 | 58.7 | 71% | | Inadequate (19° C < MWAT < 24° C) | 3.7 | 4% | 55.9 | 8.4 | 7.5 | 1.2 | 1% | | Lethal (MWAT $\geq 24^{\circ}$ C) | 0.0 | 0% | 0.0 | 0.0 | 0.0 | 0.0 | 0% | | TOTAL | 83.3 | 100% | 83.3 | 83.3 | 83.3 | 83.2 | 100% | | | | | | | | | | | Solar Radiation (ly/day) | 109.5 | | 231.6 | 117.8 | 112.4 | 100.3 | | | % Shade | 72% | | 40% | 69% | 71% | 74% | | ### North Fork Middle Fork Subbasin ### Number of Stream Miles in Each Temperature Category | Temperature Category | Current
Conditions | % of
Total | No Trees
/Shading | 18''
dbh | 24''
dbh | Full Growth
48''dbh | % of
Total | |-----------------------------------|-----------------------|---------------|----------------------|-------------|-------------------|------------------------|---------------| | | | | | | | | | | Good (MWAT $< 15^{\circ}$ C) | 0.0 | 0% | 0.0 | 0.0 | 0.0 | 0.0 | 0% | | Adequate (15° C < MWAT < 17° C) | 0.9 | 4% | 0.0 | 0.9 | 0.9 | 1.6 | 6% | | Marginal (17° C < MWAT < 19° C) | 16.5 | 65% | 3.7 | 12.1 | 14.0
| 19.6 | 78% | | Inadequate (19° C < MWAT < 24° C) | 7.8 | 31% | 21.4 | 12.1 | 10.3 | 4.0 | 16% | | Lethal (MWAT $> 24^{\circ}$ C) | 0.0 | 0% | 0.0 | 0.0 | 0.0 | 0.0 | 0% | | TOTAL | 25.2 | 100% | $2\overline{5.1}$ | 25.1 | $2\overline{5.2}$ | 25.2 | 100% | | | | | | | | | | | Solar Radiation (ly/day) | 128.6 | | 240.0 | 139.7 | 133.5 | 117.5 | | | % Shade | 67% | | 38% | 64% | 65% | 69% | | ### **Average of Modeled Subbasins** ### Number of Stream Miles in Each Temperature Category | Temperature Category | Current
Conditions | % of
Total | No Trees
/Shading | 18"
dbh | 24"
dbh | Full Growth
48"dbh | % of
Total | |--|-----------------------|---------------|----------------------|------------|------------|-----------------------|---------------| | | | | | | | | | | Good (MWAT < 15° C) | 0.0 | 0% | 0.0 | 0.0 | 0.0 | 0.0 | 0% | | Adequate $(15^{\circ} \text{ C} < \text{MWAT} < 17^{\circ} \text{ C})$ | 10.4 | 19% | 2.4 | 9.5 | 10.1 | 12.5 | 23% | | Marginal (17° C < MWAT < 19° C) | 38.1 | 70% | 13.2 | 34.5 | 35.3 | 39.2 | 72% | | Inadequate (19° C < MWAT < 24° C) | 5.8 | 11% | 38.7 | 10.3 | 8.9 | 2.6 | 5% | | Lethal (MWAT $\geq 24^{\circ}$ C) | 0.0 | 0% | 0.0 | 0.0 | 0.0 | 0.0 | 0% | | TOTAL | 54.3 | 100% | 54.2 | 54.2 | 54.3 | 54.2 | 100% | | | | | | | | | | | Solar Radiation (ly/day) | 119.1 | | 235.8 | 128.8 | 123.0 | 108.9 | | | % Shade | 69% | • | 39% | 67% | 68% | 72% | | When the trees are allowed to increase to the natural full growth scenario of 48" dbh, the model shows significant improvements: in Black Butte, only 1 mile of stream length is in the inadequate category, and the rest is in the marginal or adequate categories. The adequate category improves by about 17% over baseline conditions, and by about a third over the 18" dbh scenario. In the North Fork Middle Fork subarea, the improvements are similar, with about half the stream length in the inadequate category over baseline conditions, and smaller increases in the stream lengths that would fall into the marginal and adequate categories. What this shows is that allowing the trees to increase in size to their natural full growth potential provides noteworthy improvements in temperature conditions for salmonids. It is important to note, however, that even under this scenario, the model does not predict that every mile of stream will fall into the marginal or better categories; and none of the stream length is predicted in these tributaries to fall into the good or lethal categories. ### **Selection of Scenario Corresponding to Water Quality Standards** The narrative water quality standard states "the natural...water temperature...shall not be altered unless it can be demonstrated...that such an alteration in temperature does not adversely affect beneficial uses." The modeling of the Upper Black Butte and North Fork Middle Fork subareas illustrates that stream temperatures in the tributaries of the Middle Fork Eel watershed are expected to provide primarily adequate (15-17° C) to marginal (17-19° C) conditions under natural full growth vegetation conditions. Reducing the amount of shade from conifers (largely from reducing the tree size in the riparian zone) increases the amount of inadequate habitat and decreases the amount of adequate habitat, which "adversely affects beneficial uses" and alters the natural water temperature. Therefore, EPA has concluded that, particularly given the small amount of adequate and good habitat, any alteration in stream temperatures from natural conditions would adversely affect beneficial uses. Therefore, EPA is selecting the natural full growth scenario (48" dbh Douglas fir) to calculate the TMDL and allocations needed to attain the water quality standard. As discussed, the natural vegetation allows for natural shade and thus natural stream temperatures. The natural full growth scenario thus corresponds to "natural potential" shade, or the shade that would result from natural full growth and the corresponding natural temperatures. Accordingly, EPA concludes that attaining the water quality standards requires that there be no human-caused changes to "natural potential" shade. However, this is not the same as expecting adequate or good stream temperatures for summer rearing steelhead in every mile of every stream in the basin. The public and land managers can expect that even when water quality standards are attained, there will be a wide range of stream temperature conditions for steelhead from good stream temperatures (particularly in the spring-fed tributaries) to lethal stream temperatures (particularly in the main channels). However, achieving conditions that reflect natural full potential shade will result in conditions that are better for rearing salmonids than those achieved under some current forestry management styles. This is particularly true for privately managed timber lands. Currently, the US Forest Service lands are managed under the Northwest Forest Plan, which have resulted in no cut for about 15 years; thus, it is likely to be closer to the natural condition than any of the privately managed areas. In addition, land managers who examine their site-specific management practices will be able to determine if they protect natural potential shade, rather than relying solely on the generalizations in the modeled results. ### 3.3. WATER QUALITY INDICATORS AND TARGETS EPA has modeled estimates of the distribution of stream temperatures that would occur under full natural growth as an indicator of the conditions that would adequately represent meeting applicable water quality standards. Thus, temperature conditions under full natural shade serve as the indicator for meeting water quality standards. The minimum target value is the distribution of stream lengths that fall into the adequate and marginal temperature categories under the full growth scenario, as shown in Table 3 (column labeled full growth 48" dbh). For the tributaries in the watershed as a whole, this means that at least 23% of total stream length should fall into the good or adequate categories (< 17° C) and at least 95% of total stream length should fall into the good, adequate or marginal categories (< 15° C). For the two subareas that were fully modeled, EPA has identified a more specific distribution of temperature range distributions, reflecting what is known about the subarea from the modeling effort and what its potential would be. Thus, as shown in Table 3, in the Black Butte subarea, at least 28% of total stream length should fall into the good or adequate categories (< 17° C) and at least 99% of total stream length should fall into the good, adequate or marginal categories (< 15° C). For the North Fork Middle Fork, at least 6% of total stream length should fall into the good or adequate categories (< 17° C) and at least 84% of total stream length should fall into the good, adequate or marginal categories (< 15C). The differences between these two reflect topographical and channel geometry differences in the subareas. In the future, if additional subareas are modeled, it would be appropriate to also develop more refined models if the watershed-wide average appeared not to represent achievable conditions in the subarea–for example, if an area has significantly less natural growth of conifers. These targets illustrate that the public and land managers should expect to see instream temperatures that vary from adequate to marginal to inadequate in those tributaries, even with attainment of water quality standards. However, as shade is allowed to reach its full natural potential, the stream reaches with adequate conditions will be improved and the stream reaches with inadequate conditions will be minimized. For the main channels, EPA expects that near lethal conditions would still be expected in many areas during the hottest periods of the summer, consistent with historical conditions. We do not have monitoring data nor modeling to more specifically define natural temperature conditions in the main channels. As noted above, however, anecdotal evidence indicates that refugia were more numerous historically than under current conditions. Therefore, as a temperature indicator for the mainstem channels, we are proposing an increasing trend in refugia. For the main channels, full natural shade is also the target condition, although EPA did not model main channels. This will be particularly important in areas where deeper pools exist alongside the channel. It will be possible to estimate full natural growth conditions and determine on a case-by-case basis in the field whether those conditions have potential to shade the stream and protect natural temperatures. This assessment should also be made considering whether there are local conditions that could provide refugia (e.g., a deep pool, upwelling groundwater or greater topographic shading) as well as whether incoming water from upstream areas and tributaries reflects natural water temperatures. In addition, EPA is including as a target an increase in the number and depths of refugia pools along the main channels. These conditions likely contributed to salmonid survival historically, and may have decreased in number and depths without full recovery since the 1964 flood. Again, it should be noted that EPA is selecting the natural full growth scenario as the scenario that corresponds to the applicable water quality standards, because we believe it is most representative of natural conditions, even though the resulting water temperatures will probably remain quite warm for steelhead in some areas during the hottest period of the year. ### 3.4. TMDL AND ALLOCATIONS ### 3.4.1 Loading Capacity and TMDL The loading capacity (i.e., the TMDL) is the total loading of the pollutant that the river can assimilate and still attain water quality standards for temperature. In this TMDL, the pollutant is heat, measured in
langleys/day (ly/day). It is a measure of energy per unit area, and can be converted to metric units such as joules ($1 \text{ ly} = 41850 \text{ joules/m}^2$). In the model, "global solar radiation" over each stream segment—i.e., the solar radiation that exists above the vegetation (385 ly/day)—is reduced by topography and vegetation characteristics, resulting in a smaller amount of heat reaching the stream for each segment. As explained in Section 3.2, the heat that actually reaches the streams varies, depending upon the hillslopes, orientation and other factors, including, most importantly for the tributaries, the shade provided by the vegetation. In this section, we first discuss the TMDL we are proposing for the tributaries in the Middle Fork Eel basin. We then discuss two alternatives on which we are seeking public comment regarding the mainstream reaches in the South Fork Eel basin. ### **Tributaries** The TMDL is the maximum amount of heat from solar radiation that can be added to streams in the Middle Fork Eel River watershed and not exceed water quality standards. For the two modeled subareas, this equates to the amount of heat that would result from the full natural growth scenario; i.e., 100 ly/day for Upper Black Butte and 118 ly/day for North Fork Middle Fork (see Table 3). This is calculated in the model by subtracting the heat that would be blocked by vegetation and topography from the global solar radiation. For unmodeled tributaries, the allowable load is the average for the two subbasins, or 109 ly/day. The two subareas are representative of tributaries in the basin with perennial flow, and thus the average of the two is appropriate to use for the basin as a whole. The TMDL for the Middle Fork Eel basin tributaries, other than the two modeled subareas, is set equal to 109 ly/day. The TMDL for the two subareas is determined with greater specificity by the modeling, reflecting the greater information available for those subareas, allowing a specific refinement to the basin-wide average: The TMDL for the Upper Black Butte subarea is set at 100 ly/day; The TMDL for the North Fork Middle Fork subarea is set at 118 ly/day. Future modeling of additional subareas, if undertaken, can be used to refine these TMDLs. Otherwise, the loading for the basin shall apply. The mathematical expression of the basin-wide TMDL is the result of the average of all the stream segments in the 2 modeled subareas, given an assumption of natural full growth vegetation (i.e., 48 inch conifers). This is the loading capacity of the stream, and will allow water quality standards for temperature to be achieved. This can also be expressed as equivalent to the heat reaching the streams in the watershed when every stream segment has "natural" (unaltered) shade. This represents about a 9% reduction in heat over current conditions: 119 ly/day on average for the basin as a whole, 110 ly/day for the Upper Black Butte subarea, and 129 ly/day for the North Fork Middle Fork subarea. ### **Mainstem Reaches** Regional Board staff have indicated that they intend to recommend removing the mainstem channels of the Middle Fork Eel, including the mainstem Upper Black Butte River, from the 303(d) list of impaired waters for temperature (R. Gill, memo to J. Parish (sic), October 9, 2003; B. McFadin, pers. comm., October 2003). Their reasoning is that although temperatures in the mainstem may have increased from historical levels, the cause of the increase has not been anthropogenic but natural. Specifically, the main cause of the increase, according to Regional Board staff, was the increase in sediment following the 1955 and 1964 floods, which filled in refugia pools, destroyed the riparian vegetation, and aggraded the stream channel to the degree that riparian recovery has not occurred. All these factors have apparently combined to result in the loss of cold water habitat. Thus, temperatures have not been elevated above natural levels. Rather, the apparent temperature increase has been caused by natural events and is therefore a natural temperature increase. Many locations in the basin are still in the process of recovery. As we have discussed, the applicable water quality standard is: "The natural receiving water temperature...shall not be altered unless it can be demonstrated to the satisfaction of the Regional Water Board that such an alteration in temperature does not adversely affect beneficial uses." This standard refers to anthropogenic alterations, and does not apply to natural events. Thus, under this analysis, even if the mainstem temperatures are elevated above historic levels, because these changes are considered to be natural, the "natural receiving water" has not been altered, and the narrative standard for temperature is being met. # <u>Temperature TMDL Alternative 1: No TMDL Required For Mainstem Reaches, Which Are Not Impaired</u> Alternative 1 is for EPA to make a determination that no TMDL for temperature is needed for the mainstem reaches of the Middle Fork Eel. This determination would be based on the reasoning of the Regional Board set forth above that water quality standards for temperature are being met because any temperature elevation is due to natural causes. Under this alternative, no TMDL for temperature would be established for the mainstem reaches. Even if this determination is made for the mainstem reaches, we emphasize that for the tributaries, we have concluded that the alteration in temperatures in the tributaries is primarily the result of human activity, specifically, cutting of trees in the riparian zone. Therefore, a TMDL is needed for the tributaries, and the TMDL (loading capacity) and allocations are discussed below. It is also noteworthy that the Regional Board has indicated that although elevated temperature conditions are natural (delayed recovery from effects of 1955 and 1964 floods), beneficial uses in the mainstem reaches are not being supported; therefore, until recovery is complete and beneficial uses are fully supported, the Regional Board concludes that no additional controllable (i.e., anthropogenic) factors that would impair recovery, resulting in additional heat load, would be allowed under provisions of the Basin Plan (B McFadin, pers. comm., October 2003). EPA specifically invites comments on its proposal to determine that a TMDL for temperature is not needed for the mainstem Middle Fork Eel. If EPA makes this determination, it will be incorporated in the final version of this TMDL document, which will be issued in December 2003. ### <u>Temperature TMDL Alternative 2: TMDL of 9% Reduction of Heat Input in the Mainstem</u> Channels As noted above, the Regional Board has indicated that beneficial uses are not being supported in the mainstem reaches, due at least in part to elevated temperatures. EPA anticipates that comments may be received presenting reasons why a TMDL for temperature is in fact needed for the mainstem. Therefore, EPA is also soliciting comments on Alternative 2, a proposed TMDL and allocations for the mainstem as follows: As discussed above, the modeling performed for this TMDL in the tributaries indicates that approximately a 9% decrease in heat input is needed in order to achieve water quality standards for temperature in the basin as a whole. This is based on the basinwide maximum allowable heat input of 109 ly/day, reduced from current conditions of about 119 ly/day. The main channels differ significantly in important heat- and shade- related characteristics from the modeled tributaries; in particular, mainstem reaches are generally wider and deeper, with faster streamflow and greater volume, and heat is influenced less by shading factors, so they are generally hotter than the tributaries. Accordingly, we do not consider it appropriate to apply the 109 ly/day loading capacity to the main channels. Instead, we are expressing the TMDL in terms of a 9% decrease from current heat loading for the main channel. This is based on the assumption that even though conditions are different, there is likely a similar extent of temperature impairment in the main channels as exists in the tributaries. Based on input from the Regional Board and our analysis of conditions in the mainstem channels, we recommend that most of the necessary decrease be achieved through an increase in protection of refugia pools along the channels. ### 3.4.2 Allocations In accordance with EPA regulations, the loading capacity (i.e. TMDL) is allocated to the various sources of heat in the watershed, with a margin of safety. The margin of safety in this TMDL is not added as a separate component of the TMDL, but rather is incorporated into conservative assumptions used to develop the TMDL, as discussed below. The measure of heat reaching the stream is several steps removed from actions which can be taken by land managers. Thus, for the tributary load allocations, we have translated the TMDL of heat (langleys/day) into an average % shade requirement for the watershed. As described above, "shade" is not precisely the same as the amount of stream in shadow or the amount of the stream surface shaded from direct sunlight. Shade is the reduction in solar radiation, i.e., the reduction of light and heat, from global solar radiation, or the heat that exists globally in the basin (i.e., above the trees and topography, prior to any shading), less the filtering and buffering of heat and light by vegetation and topography, which translates to the heat input at the water surface. Using this translation, shade was calculated as the reduction in solar radiation from the global solar radiation to that which is filtered through the vegetation and topography. It is expressed as a percentage of shade, which is equivalent to a percentage reduction in radiation. For example, the reduction from 385 ly/day (global solar radiation) to 109 ly/day (the basinwide TMDL) is a 72% reduction in solar radiation, or the equivalent of a
minimum 72% shade; this is the basinwide allocation. We are expressing the reduction of solar radiation in % shade because, while solar radiation and heat cannot be measured directly, shade can be measured more directly and simply throughout the basin—for example, by using a solar pathfinder, which is a simple tool that is frequently employed by land managers to determine shade. Likewise, changes in shade can be measured over time. Thus, this expression of the TMDL is more useful to land managers and regulators because they can measure their progress using simple, established methods that are readily available, rather than needing to measure heat in langleys per day. For the two modeled subbasins with more data available, we have added detail by translating the TMDL into % shade allocations along different stream segments. These are very close to the basinwide allocation. For the Upper Black Butte area, the allocations (minimum 74% shade on average) are shown in Figure 6. North Fork Middle Fork allocations (minimum 69% shade on average) are illustrated in Figure 7. These two figures add more detail to the shade allocations by specifying allocations along different stream segments. For the remainder of the watershed (excluding the mainstem reaches), the allocation is derived from the TMDL of 109 langleys per day. As discussed, this is equivalent to 72% shade, on average. This indicates that about 2-3% more shade is needed, on average, than what exists under current conditions. For the mainstem reaches, no allocations are required under Alternative 1, as no TMDL is required. For Alternative 2, the allocations are the same as the TMDL: a 9% reduction in the heat input over current conditions. As noted above, the main concern for the mainstem is to achieve natural conditions, both for shade and channel conditions, with regard to refugia. An increase in shaded pools, and increased depth and frequency of primary pools should result in natural heat loading and corresponding natural temperatures. ### In summary: The load allocation for Upper Black Butte subarea = average blocked solar radiation for the subarea represented by the full natural growth scenario, which = (385-100)/385 ly/day, or 285/385 ly/day, which = 74% reduction in solar radiation, or 74% shade. The load allocation for North Fork Middle Fork subarea = average blocked solar radiation for the subarea represented by the full natural growth scenario, which = (385-118)/385 ly/day, or 267/385 ly/day, which = 69% reduction in solar radiation, or 69% shade. The load allocation for the remainder of the watershed (excluding the mainstem reaches) = average blocked solar radiation for the two subareas represented by the full natural growth scenario, or (385-109)/385 ly/day, or 276/385 ly/day, which = 72% reduction in solar radiation, or 72% shade. Current conditions in Upper Black Butte suggest 72% shade (see Table 3). In North Fork Middle Fork, current conditions reflect 67% shade. The overall average is assumed to be about 69% shade, based on the two subareas. Thus, only a small improvement is needed to meet water quality standards for temperature, to add 2-3% more shade overall. Given that little timber harvesting has taken place in the basin, it is understandable that the basin is nearly meeting standards at present. For the mainstem reaches, no allocations are required under Alternative 1, and Alternative 2 requires a 9% reduction in the heat input over current conditions. EPA specifically requests comments on the two alternatives for the mainstem channels. ### 3.4.3 Margin of Safety An implicit margin of safety is included using conservative assumptions to account for uncertainties concerning the relationship between pollutant loads and instream water quality and other uncertainties in the analysis. It is likely, given both anecdotal information and results of the temperature monitoring and modeling, that temperatures in the basin are coming close to meeting water quality standards and are adequately supportive of the cold water fishery. Due to uncertainty in existing natural temperature conditions throughout the basin, it is appropriate to develop this TMDL to identify loadings that EPA has confidence will support beneficial uses. Using 48" dbh to reflect full natural growth may in fact be larger than would be achieved under natural conditions, considering what would likely be achieved with natural fire regimes. In addition, management under the Northwest Forest Plan may already be resulting in attainment of water quality standards for USFS and BLM lands. The TMDL allocations provide an additional layer of protection for both public and private lands. In addition, protections provided by controlling sediment (Chapter 4) will also protect water temperatures. Implementing the temperature TMDL will result in larger riparian vegetation, which will increase the potential for contributions of large woody debris to streams. Increases in large woody debris benefit stream temperatures and associated cool water habitat by increasing channel complexity, including the number and depth of pools, which can provide areas of cooler water for fish. These changes were not accounted for in the analysis, but provide an implicit margin of safety. Refugia from existing stratified pools or streams dominated by springs provide cooler temperatures than were accounted for in the TMDL. As this provides additional benefits to the resource, it provides an implicit margin of safety. Finally, implementing the temperature TMDL will result in larger riparian vegetation. Larger vegetation will tend to create microclimates that will lead to improvements in stream temperatures. These effects were not accounted for in the temperature analysis, but provide an implicit margin of safety. ### 3.4.4 Seasonal Variation and Critical Conditions The TMDL must account for seasonal variation and critical conditions. In the Middle Fork Eel watershed, the summer period defines the critical period when stream temperatures are most likely to have adverse impacts on beneficial uses (young salmonids growing in the streams before migrating to the ocean). To account for seasonal variations and critical conditions, the analysis is based on the MWAT (i.e., the maximum weekly average of the 7 day running average of all monitored temperatures). Temperatures are not limiting to beneficial uses during the winter period. ### **CHAPTER 4: SEDIMENT TMDL** ### **Summary** The sediment source analysis for the Middle Fork Eel conducted by the United States Forest Service concluded that the majority of sediment delivered to streams is naturally caused, and most of the sediment is from landslides. The results suggest that the Middle Fork Eel is less disturbed by human-caused sediment than most other watersheds studied in the North Coast. This is probably because little management activity is occurring in the basin. EPA also concludes, based on current information, that some USFS lands in the Middle Fork Eel may be meeting water quality standards for sediment. For example, the Yolla Bolly Wilderness is left in natural (unmanaged) condition. Additionally, some management under the Northwest Forest Plan appears to be generating little sediment above that which would be generated under natural conditions. Under current practices and current intensity of use, those USFS lands will probably continue to meet TMDL limits. However, little information was available for instream conditions, and confidence in some portions of the sediment source analysis that was conducted for this TMDL was limited. Furthermore, the available information on management and sediment production on private lands was less complete and more uncertain. Regional Water Board staff provided an alternative perspective on the sediment source analysis. Thus, EPA cannot necessarily conclude that all lands in the basin are meeting water quality standards, and EPA is soliciting comments on two alternatives for setting the TMDL and load allocations; the alternatives both propose that the TMDL be set at a level to make some reductions in sediment loading on a basinwide average. This chapter presents information specific to the sediment TMDL for the Middle Fork Eel River. The first section of this chapter presents the results of the USFS's sediment source analysis, along with EPA's analysis of the uncertainty associated with the analysis and the Regional Water Board's alternative source analysis. The second section identifies water quality indicators, which are proposed as interpretations of the water quality standards. These indicators can also be used to evaluate stream and watershed conditions and progress toward or achievement of the TMDL. The third section presents the proposed alternatives to calculate the TMDL, which is the total loading of sediment that the Middle Fork Eel River and its tributaries can receive without exceeding water quality standards, and apportions the total among the major categories of sediment sources. ### 4.2. WATER QUALITY INDICATORS AND TARGETS This section identifies water quality indicators and targets that are more specific to the Middle Fork Eel River and generally more quantifiable than the water quality standards for sediment contained in the Basin Plan. They are interpretations of the water quality standards expressed in terms of instream and watershed conditions. For each indicator, a numeric or qualitative target value is identified to define the desired condition for that indicator. The indicators are not directly enforceable by EPA; however, one indicator, for turbidity, uses similar language to the Basin Plan turbidity water quality objective, which is enforceable by the NCRWOCB. No single indicator adequately describes water quality related to sediment, so a suite of instream and watershed indicators is identified. Because of the inherent variability associated with stream channel conditions, and because no single indicator
applies at all points in the stream system, attainment of the targets is intended to be evaluated using a weight-of-evidence approach. That is, when considered together, the indicators are expected to provide good evidence of the condition of the stream and attainment of water quality standards. Instream indicators reflect sediment conditions that support salmonids. They relate to instream sediment supply and are important because they are direct measures of stream "health." In addition to instream indicators, we are including watershed indicators in this TMDL because watershed indicators focus on imminent threats to water quality that can be detected and corrected before the sediment is actually delivered to the stream, and because watershed indicators are often easier to measure than instream indicators. These watershed indicators are established to identify conditions in the watershed needed to protect water quality. They are set at levels associated with well functioning watersheds. Watershed indicators assist with the identification of threats to water quality for both temporal and spatial reasons. Watershed indicators reflect conditions in the watershed at the time of measurement, whereas instream indicators can take years or decades to respond to changes in the watershed, because linkages between hillslope sediment production and instream sediment delivery are complicated by time lags from production to delivery, instream storage, and transport through the system. Also, watershed indicators tend to reflect local conditions, whereas instream indicators often reflect upstream watershed conditions as well as local conditions. Thus, watershed indicators help to identify more prospectively conditions in the watershed needed to protect water quality. Both instream and watershed indicators are appropriate to use in describing attainment of water quality standards. ### 4.2.1 Summary of Indicators and Targets This section describes several sediment indicators for the Middle Fork Eel River TMDL. Table 5 summarizes the indicators, targets, description and purpose. Very little information is available on current values of the indicators in the watershed; however, anecdotal information suggests that the watershed is in relatively good condition relative to other North Coast basins, although some subwatersheds may have greater sediment problems (D. Leland, pers. comm., 2003). In this watershed, much of the Forest Service lands may be currently meeting these target values; as noted, however, monitoring or observational data concerning specific indicators is generally not available. Regional Water Board staff has also developed additional information and detail on each of these indicators in developing implementation plans for other North Coast TMDLs (NCRWQCB, 2002). EPA expects that future monitoring of these indicators will provide additional information to assess whether the water quality standards are being attained and whether the TMDL is effective in meeting water quality standards. **Table 5. Sediment Indicators and Targets** | INDICATOR | TARGET | DESCRIPTION | PURPOSE | |--|--|--|--| | Instream | | | | | Spawning Gravel
Quality | <14% < 0.85 mm
≤30% < 6.4 mm; | Bulk samples during low-flow period, at riffles heads in potential spawning reaches. Discussion of indicators and targets by Kondolf (2000), Chapman (1988). | Indirect measure of fine sediment content relative to incubation and fry emergence from the redd Indirect measure of ability of salmonids to construct redds | | Turbidity and
Suspended
Sediment | Turbidity ≤ 20% above naturally occurring background (also included in Basin Plan) | Measured upstream and downstream of sediment discharging activity or between "paired" watersheds or reference streams. | Indirect measure of fish feeding/growth ability related to sediment, and impacts from management activities | | Riffle
Embeddedness | ≤25% or improving (decreasing) trend toward 25% | Estimated visually at riffle heads where spawning is likely, during low-flow period (Flosi et al 1998) | Indirect measure of spawning support; improved quality & size distribution of spawning gravel | | V* | ≤0.21 | Residual pool volume. Measure during low-flow period. (Lisle and Hilton 1992) | Estimate of sediment filling of pools from disturbance | | Aquatic Insect
Production | Improving trends | EPT, Richness & % Dominant Taxa indices.
Methods should follow CDFG-WPCL (1996) or
refined methods currently under development. | Estimate of salmonid food availability, indirect estimate of sediment quality. | | Thalweg profile | Increasing variation from the mean | Measured in deposition reaches during low-flow period. | Estimate of improving habitat complexity & availability | | pool/riffle
distribution &
depth of pools | increasing trend
toward >40% in
primary pools | Trend or greater than % (by length), measured low-flow period. | Estimates improving habitat availability | | Watershed Indicate | ors | | | | Diversion
potential & stream
crossing failure
potential | ≤1% crossings in 100 yr storm | Conduct road inventory to identify and fix stream crossing problems (Weaver and Hagans 1994). See USDA (1999) Roads Analysis for assessing road network. | Estimates potential for reduced risk of sediment delivery from hillslope sources to the watercourse | | Hydrologic
connectivity of
roads | Decreasing length of road | Conduct road inventory to identify and fix road drainage problems (Weaver and Hagans 1994). | Estimates potential for reduced risk of sediment delivery from hillslope sources to the watercourse | | Annual road inspection & correction | Increased mileage inspected and corrected | Roads inspected and maintained, or decommissioned or hydrologically closed prior to winter- No migration barriers. | Estimates potential for reduced risk of sediment delivery from hillslope sources to the watercourse | | Road location,
sidecast | Reduce density next
to stream, increased
% outsloped | see text | minimize sediment delivery | | Activities in unstable areas | avoid and/or
/eliminate | Subject to geological/geotechnical assessment to minimize delivery and/or show that no increased delivery would result | minimize sediment delivery from management activities | ### 4.1.2 Instream Indicators Spawning Gravel Quality: Percent Fines < 0.85 mm: ≤14%; Percent Fines <6.4 mm ≤ 30% Streambed gravels naturally consist of a range of particle sizes from finer clay and sand to coarser cobbles and boulders. Kondolf (2000) described how various gravel sizes and mixtures can influence different salmonid life stages including redd construction, egg incubation and alevin emergence. In addition, spaces between clean cobbles provide important cover for salmonid and other fry at a critical and vulnerable time in their life history. The percent fines <0.85 mm is defined as the percentage of subsurface fine material in pool tail-outs < 0.85 mm in diameter. These indicators and targets represent adequate spawning, incubation, and emergence conditions relative to substrate composition. Excess fine sediment can decrease water flow through salmon redds. Sufficient water flow is critical for maintaining adequate oxygen levels and removing metabolic wastes. Deposits of these finer sediments can also prevent the recently hatched fry from emerging from the redds, resulting in entrapment. Monitoring should be conducted by bulk sampling during low-flow periods at the heads of riffles, in potential spawning reaches. The target of ≤30% for particles less than 6.4mm sizes is based on literature relating size classes survival to emergence (summarized in Chapman 1988, and Kondolf 2000). No data for this indicator was available to EPA during development of this TMDL. Turbidity and Suspended Sediment: <20% above naturally occurring background levels. Turbidity is a measure of the ability of light to shine through water (with greater turbidity indicating more material in the water blocking the light). Although turbidity levels can be elevated by both sediment and organic material, in California's North Coast, stream turbidity levels tend to be highly correlated with suspended sediment. High turbidity in the stream affects fish by reducing visibility, which may result in reduced feeding and growth. The deleterious effects on salmonids were found not only to be a function of concentration of fine particles but also a function of duration of exposure. Sigler et al (1984) found that as little as 25 NTUs of turbidity caused a reduction in fish growth. The North Coast Basin Plan presently stipulates that turbidity shall not be increased more than 20 percent above naturally occurring background levels by an individual activity. This indicator should be measured during and following winter storm flows, and upstream and downstream of a management activity to compare changes in the turbidity levels that are likely attributable to that activity. Information should include both magnitude and duration of elevated turbidity levels. Although some data are available, turbidity data correlated to flows is not available for the Middle Fork Eel basin. Many measurements taken during the winter of 1981 - 1982 (DWR, 1982, at 24 sites) and in 1959 - 1964 show extremely high turbidities during peak storm discharges. Seven sites had measurements over 1000 NTUs during a November storm and then returned to less than 40 NTU 5 days later. USGS and DWR also reported extremely high
turbidity measurements during the 1964 flood (as reported in DWR, 1982) - 5800 NTU for Williams Creek, 3600 NTU for Black Butte River and 3100 NTU at the ranger station. These measurements are thought to be among the highest ever reported. This suggests that the results of the 1964 flood were significant in this basin. However, these limited data points do not provide any indication of background turbidity, nor do they provide an indication of current conditions. Riffle Embeddedness: <25% or improving (decreasing) trend Embeddedness is a measure of fine sediment that surrounds and packs-in gravels. A heavily embedded riffle section may limit the ability of an adult female to construct a redd. When constructing its redd, generally at a pool tail-out (or the head of the riffle), the spawning fish essentially slaps its tail against the channel bottom, which lifts unembedded gravels and removes some of the fine sediment. This process results in a pile of cleaner and more permeable gravel, which is more suited to nurturing of the eggs. Embedded gravels do not generally lift easily, which prevents spawning fish from building their redds. Flosi et al. (1998) suggest that gravels that are less than 25% embedded are preferred for spawning. This target should be estimated during the low-flow period, generally at riffle heads, in potential spawning reaches. Embeddedness is measured as part of the CDFG stream inventory program. Results from summer 2002 estimates are not yet available. ## V* <0.21 (Franciscan geology) V* is a measure of the fraction of a pool's volume that is filled by fine sediment, and represents the in-channel supply of mobile bedload sediment (Lisle and Hilton 1992). It reflects the quality of pool habitat, because when less of the pool is filled (a lower pool volume) it reflects deeper, cooler pools offering protection from predators, a food source, and resting location. Lisle and Hilton (1992) also describe methods for monitoring, which should be conducted in low-flow periods. V* is not appropriate for large rivers, but in large river systems it is appropriate for tributaries. The target of V* values less than .21 (Franciscan geology) is based on Knopp (1993). The only V* value available for this basin,0.08 for Balm of Gilead Creek, is well within the target range. # Aquatic Insect Production: Improving trends in EPT, % dominant taxa and species richness indices Benthic macroinvertebrate populations are greatly influenced by water quality and are often adversely affected by excess fine sediment. This TMDL recommends several indices be calculated, following the CDFG Water Pollution Control Laboratory Stream Bioassessment Procedures (1996), until refined indices are available. - 1. EPT Index. The EPT Index is the number of species within the orders Ephemeroptera, Plecoptera, and Trichoptera (EPT), more commonly known as mayflies, stoneflies and caddisflies. These organisms require higher levels of water quality and respond rapidly to improving or degrading conditions. - 2. Percent Dominant Taxa. This index is calculated by dividing the number of organisms in the most abundant taxa by the total number of organisms in the sample. Collections dominated by one taxa generally represent a disturbed ecosystem. - 3. Richness Index. This is the total number of taxa represented in the sample. Higher diversity can indicate better water quality. ## Thalweg Profile: Increasing variation of elevation around the mean slope Variety and complexity in habitat is needed to support fish at different times in the year or in their life cycle. Both pools and riffles are used through spawning, incubation of eggs, and emergence of the fry. Deeper pools, overhanging banks, or logs provide cover from predators. Measuring the thalweg profile is an indicator of habitat complexity. The thalweg is the deepest part of the stream channel at a given cross section. The thalweg profile is a plot of the elevation of the thalweg as surveyed in a series of cross sections. Harrelson et al. (1994) provide a practical guide for performing thalweg profiles and cross sections. The profile appears as a jagged but descending line, relatively flat at pool areas, and descending sharply at cascades. The comparison between the mean slope (i.e., the overall trend of the descending stream) and the details of the slope is a measure of the complexity of stream habitats. More variability in the profile indicates more complexity in stream habitat. Inadequate availability of pool-forming features, such as bedrock or large woody debris, can be revealed by this indicator of channel structure. Because the change in the profile will occur relatively slowly, and because not enough is yet known about channel structure to establish a specific number that reflects a satisfactory degree of variation, the target is simply an increasing trend in variation from the mean thalweg profile slope. This indicator should be measured during the low-flow period every 5-10 years, after large storm seasons. # Primary Pool Distribution and Depth: <u>Increasing inventory of reaches which are >40% pools</u>; increasing primary pool depth Pools generally account for more than 40% of stream length in streams with good salmonid habitat (Flosi et al. 1998). Frequent pools are important for providing feeding stations and shelter, and may also serve locally as temperature refugia. Primary pools are defined by Flosi et al. (1998) as follows: For 1st and 2nd order streams, they have a maximum residual depth (the maximum depth of a pool minus the maximum depth of its downstream riffle crest, or the depth of the pool at the point of zero flow) of at least two feet, occupy at least half the width of the low flow channel, and are as long as the low flow channel width. For 3rd and 4th order streams, they have a maximum residual depth of at least three feet, occupy at least half the width of the low flow channel, and are as long as the low flow channel width. (Small, un-branched, perennial tributaries that terminate at an outer point are designated 1st order; the junction of two 1st-order streams is designated 2nd order, and the junction of two 2nd-order streams is designated 3rd order, etc.). This indicator should be measured during the low-flow period every 5-10 years, after large storm seasons. Information in this watershed should especially include the depth of pools because in this watershed deeper pools may also be important as temperature refugia. Backwater pools are used by salmonids as overwintering habitats (Flosi et al. 1998). In particular, they provide shelter from high storm flows. Lateral scour pools (i.e., pools formed near either bank) tend to be heavily used by fish for cover and refugia. #### 4.1.3. Watershed Indicators # Stream Crossings with Diversion Potential or Significant Failure Potential: <1% of all stream crossings divert or fail as a result of a 100-year or smaller flood Most roads, including skid roads and railroads, cross ephemeral or perennial streams. Crossings are built to capture the stream flow and safely convey it through, under, or around the roadbed. However, stream crossings can fail, adding sediment from the crossing structure (i.e., fill) or from the road bed directly into the stream. Stream crossings with diversion potential or significant failure potential are high risks for sediment delivery to streams. Stream crossing failures are generally related to undersized, poorly placed, plugged, or partially plugged culverts. When a crossing fails, the total sediment volume delivered to the stream usually includes both the volume of road fill associated with the crossing and sediment from collateral failures such as debris torrents that scour the channel and stream banks. An important problem is water draining down the road away from the stream crossing. This can result in water creating a new channel. Diversion potential is the potential for a road to divert water from its intended drainage system across or through the road fill, thereby delivering road-related sediment to a watercourse. The potential to deliver sediment to the stream can be eliminated from almost all stream crossings by eliminating inboard ditches, outsloping roads, or installing rolling dips (US EPA 1998). Less than 1% of stream crossings have conditions where modification is inappropriate because it would endanger travelers or where modification is impractical because of physical constraints. ## Hydrologic Connectivity: Decreasing length A road is hydrologically connected to a stream when the road drains water directly to the stream. A hydrologically connected road increases the intensity, frequency, and magnitude of flood flows and suspended sediment loads in the adjacent stream, which can result in destabilization of the stream channel. This can have a devastating effect on salmonid redds and growing embryos (Lisle 1989). The connectivity can be reduced by outsloping roads, creating road drainage that mimics natural drainage as much as possible, and other factors (USDA 1999, Weaver and Hagans 1994). ### **Annual Road Inspection and Correction:** EPA's analysis indicates that in watersheds with road networks that do not have excessively road-related sedimentation, roads are either (1) regularly inspected and maintained; (2) hydrologically maintenance free (i.e., they do not alter the natural hydrology of the stream); or (3) decommissioned or hydrologically closed (i.e., fills and culverts have been removed and the natural hydrology of the hillslope has largely been restored). #### **Road Location and Sidecast:** Prevent sediment delivery This indicator is intended to address the highest risk sediment delivery from roads not covered in other indicators. Roads located in inner gorges and headwall areas are more likely to fail than roads located in other topographic locations. Roads should be removed from inner gorge and potentially unstable headwall areas, except where alternative road
locations are unavailable and the road is clearly needed. Sidecast soil on steep slopes can trigger earth movements, potentially resulting in sediment delivery to watercourses. These factors reflect the highest risk of sediment delivery from roads, and should be the highest priorities for correction (C. Cook, M. Furniss, M. Madej, R. Klein, G. Bundros, pers. comm., 1998, in EPA 1998). This target calls for: (1) all roads alongside inner gorge areas or in potentially unstable headwall areas should be removed unless alternative road locations are unavailable and the need for the road is clearly justified; and (2) sidecast or fill on steep (i.e., greater than 50%) or potentially unstable slopes, that could delivery sediment to a watercourse, should be pulled back or stabilized. Activity in Unstable Areas: <u>Target: avoid or eliminate, unless detailed geologic assessment by a certified engineering geologist concludes there is no additional potential for increased sediment loading</u> Unstable areas are those areas that have a high risk of landsliding, including steep slopes, inner gorges, headwall swales, stream banks, existing landslides, and other locations identified in the field. Any activity that might trigger a landslide in these areas (e.g., road building, harvesting, yarding, terracing for vineyards) should be avoided, unless a detailed geologic assessment by a certified engineering geologist concludes there is no additional potential for increased sediment loading. An analysis of chronic landsliding in the Noyo River basin indicated that landslides observed on aerial photographs largely coincide with predicted chronic risk areas, including steep slopes, inner gorges and headwall swales (Dietrich et al., 1998). Several other studies have shown that landslides are larger or more common in some harvest areas, particularly in inner gorges (US EPA, 2000). Weaver and Hagans (1994) also suggest methods for eliminating or decreasing the potential for road-related sediment delivery. #### 4.3. SEDIMENT SOURCE ANALYSIS This section summarizes the results of the sediment source analysis conducted by the US Forest Service for this TMDL, as well as Regional Water Board staff review and critique of the sediment source analysis. The purpose of the sediment source analysis was to identify and estimate the relative amounts of sediment from the various sediment delivery processes and sources in the watershed. Appendix B is the full USFS sediment source analysis; this section is a summary of Appendix B, along with an explanation of EPA's consideration of this information to develop the TMDL, especially concerning the characterization of sediment sources as natural or related to human activity. #### **USFS Sediment Source analysis methodology** The sediment source analysis for the Middle Fork Eel River and tributaries (including Black Butte River) was conducted by the USFS for EPA. The sediment source analysis is composed of two parts - 1) a landslide assessment based on aerial photos with some field checking, and 2) a small sediment source survey largely based on field work and rate estimates from other studies. The landslide air photo assessment was conducted for all land in the watershed, including both the USFS lands of the Mendocino National Forest and private lands. Some information, particularly for small sources, was not available for private lands, as explained below. Lands belonging to the Round Valley Indian Tribe are not subject to State Water Quality standards, so the TMDL does not apply to them, although some information from some tribal lands is included, where it was available. The landslide component utilized a basin-wide air photo inventory that mapped all visible landslides from available air photo sets, estimated sediment volume delivered to the stream system from those landslides, and assigned a management association (road-related, harvest-related) to slides when there was a management activity visible in the photo above the landslide in the photo; landslides with no management association were assumed to be due to natural causes. The small source component of the study addressed sources that would not be visible on air photos, such as surface erosion from roads, timber harvest units, gullies related to human activity, and streambank erosion. Field work was conducted on USFS lands only; USFS data (e.g., from emergency road repair work) as well as sediment delivery rates determined from other studies were extrapolated for basinwide rates. Landslides were placed into three periods: 1940-1969, 1970-1984 and 1985-2000. The latest period was used to determine current rates. Unfortunately, air photo availability was limited, and the air photos do not accurately bracket these time periods. For example, the 1940-1969 rates are determined from air photos dated 1952 and 1969 for the Upper Middle Eel, Elk Creek and Black Butte River subareas, and 1965 photos for the western portion of the basin (Round Valley and Williams Creek). The 1970-1984 rates were determined from 1981 photos for Upper Middle Eel and Elk Creek, 1979 photos for Black Butte River, and 1984 photos for Round Valley and Williams Creek. The current period is based on 1998 air photos for Upper Middle Eel and Elk Creek, 1993 and 1998 photos for Black Butte River, and 2000 photos for Round Valley and Williams Creek. Thus, the periods are not strictly comparable, but they were chosen to include the major storms of the periods: 1955, 1964, 1974, 1986 and 1997. In addition, delineating these periods separated the earlier periods from the most recent period, during which modern logging practices, USFS Best Management Practices, and standards of the Northwest Forest Plan have been used. The small sediment source survey assessed the following sediment sources through a field survey of USFS lands: the road prism (road surface, cutbanks, inside ditches and cut & fill slope); road failures (such as cutbank and fill failures, small landslides and washed out culverts); timber harvest erosion from skid trails and landings; gullies from roads in grassland areas; and bank erosion. All these types of sources are too small to be seen from air photos. Only USFS lands were sampled, with sites randomly selected from a weighted average of road lengths and harvest areas in the four subareas in the basin. Private roads and harvest areas were not sampled in the field. Sites for road prism sediment estimates were also stratified by USFS road maintenance level. Field crews measured the road surface, cutbanks, inside ditches and cut and fill slopes. This information was used in a model to generate sediment estimates. The sediment estimates were then extrapolated to the entire USFS road network. Additional information on road failures was obtained from Mendocino National Forest records and engineering personnel. Road-related gullies were also field surveyed in USFS grassland and hardwood stands. Bank erosion was estimated by reviewing literature values from Grouse Creek, and applying those rates throughout the basin and the River Basin Study. Rates were applied to stream lengths. It was assumed that all bank erosion measured in the field had been generated in the last five years. #### **Results** The USFS landslide assessment identified over 4,000 landslides in the 61-year period from 1940 to 2000, with 77% of the number and 79% of the volume occurring prior to 1969. Most of the sediment was probably generated from the 1964 flood, which is known to have caused significant changes in the watershed. The sediment generated in the 1940-1969 period averaged 1,307 t/mi²/yr. In 1970-1984, the rate was only 257 t/mi²/yr, probably in part because everything that could have been triggered was triggered during the 1964 flood. The current rate (1985-2002) is estimated to be 370 t/mi²/yr (Note that EPA corrected all landslide estimates provided by USFS that included the current period, to account for an error in the number of years included in the period 1985-2002). The Black Butte River and Williams/Thatcher subwatersheds accounted for 44% of the sediment volume over the 1940-2002 period, with rates of 1,461 and 1,236 t/mi²/yr, respectively, for the 63-year period, compared with 790 t/mi²/yr for the basin as a whole, and only 272 t/mi²/yr for the Upper Middle Fork. Elk/Dos Rios and Round Valley subwatersheds produced an average of 428 and 415 t/mi²/yr, respectively, during the study period. The toes of large, deep-seated landslides comprise the bulk of the volume of sediment delivered to the stream. Most of these landslides were not associated with any management activity. The relative lack of management associations with landslides has not changed significantly over the entire study period, although the period that includes the 1964 flood yielded significantly higher volumes of both natural landslides and road-related landslides. The summary of estimates for the most recent period is shown in Table 6. Natural landslides account for 364 t/mi²/yr. USFS estimated bank erosion at 604 t/mi²/yr. Landslides associated with roads and harvest areas totaled 7 t/mi²/yr. Estimates for smaller sources associated with roads, gullies, and harvest areas totaled about 6 t/mi²/yr. Rates for bank erosion and smaller sources were also applied to the entire study period, because information was not available for earlier periods. #### **Discussion** The sediment source analysis represents a significant amount of work by USFS, and provides useful information regarding sediment sources in this basin. However, EPA has some concerns about the sediment source analysis, particularly related to the assignment of management associations to sources. We outline our concerns below. These concerns influenced how we determined the loading capacity and TMDL (see Section 4.3 below). Table 6: USFS Sediment Source Analysis Results 1985-2002 | Source | Load
t/mi²/yr | |--
----------------------------| | Natural Landslides | 364 | | Bank Erosion | 604 | | Total Natural | 968 | | Road-Related Landslides | 5 | | Harvest-Related Landslides | 2 | | Other Road Sources | 6 | | Harvest skid trails & landings | <1 | | Gullies | <1 | | Total Human-Related | 13+ | | TOTAL | 981+ | | Percent of Management and Natural Sediment | 99% natural, 1% management | For the landslide analysis, the air photo periods selected were assumed to include all of the landslides for that period, even though the air photos were not bracketed by the periods selected. The assessment also combined several different air photo years into a single period in order to simplify the analysis. In doing so, the major storm periods were kept together, and an assumption was made that little sediment was generated in the smaller storm years. However, it is possible that some landslides occurred in different time periods than those to which they were assigned. Errors also could have been made in assigning management associations to landslides. Estimating landslide sizes and delivery is difficult and likely resulted in some errors. The sizes of the possible errors are not known. Landslides were assigned a timber harvest association only in clearcuts; smaller landslides associated with non clearcuts or other management associations could have been overlooked. Road-related or other small landslides may have been smaller than the threshold size that could be seen in aerial photos. This probably resulted in an underestimate of road-related landslides. The extent of the error is not known, but could possibly be large. In the Big River, for example, small landslides, particularly road-related, accounted for a significant portion of the sediment delivered to streams (USEPA, 2000). In addition, landslides that were associated with fire or uncharacterized as to association were deemed to be natural; some of these could be mischaracterized. Over the 63 year study period, landslides characterized as fireassociated accounted for 15 t/mi²/yr, and those characterized as "other" accounted for 35 t/mi²/yr, so this is not a large factor in the overall quantity generated, but if all were actually managementrelated, it would raise the very small quantity of management-related sediment that is estimated. There was no field-generated information on sediment related to roads, harvest or other small sources on private lands, so the estimate is probably low for these sources. GIS map coverages were used to estimate lengths and stream crossings for private roads, and USFS sediment delivery rates were applied to those estimates. This method probably underestimated sediment generated from private roads, because private road design and maintenance is likely worse than that of the Forest Service. In addition, the GIS layers for the watershed substantially underestimate the real length of the road network. Gully estimates include only estimates from road-caused gullies. Erosion from roads, timber harvest and gullies may have been underestimated, since erosion generated prior to the 2003 field estimates may not have been visible. Time periods associated with these estimates cannot be estimated accurately, and may range from one to more than 10 years. There is considerable uncertainty in the bank erosion estimates, since the rates were taken from a single subbasin in the South Fork Trinity watershed, and applied to stream lengths, which could also have some uncertainty. In addition, the landslide analysis, which measured mass wasting to the streambed, could double-count sediment generated in the streamside area which would otherwise be classified as bank erosion. It is likely that the bank erosion estimates are high. In addition, some of the bank erosion is likely due to management causes, though it is not possible to clearly determine how much is due to management versus non management causes. ### Comparisons With Other Studies EPA compared the estimates from this sediment source analysis with those from other basins. However, it is difficult to make direct comparisons of the estimates with those of other recently-completed analyses in nearby basins with similar geology, due to differences in methodologies, time periods, geology and land uses. The USFS analysis (Appendix B) compared rates from the North Fork and Middle Fork Eel River basins, which are geologically similar, geographically close, and similar in terms of land use and management. However, the studies completed for the North Fork Eel used different study periods, and the analysis for the portion managed by USFS only included landslides. Despite the difficulties in making comparisons, the comparisons that are possible do raise additional questions about our confidence in the source analysis data. For example, USFS notes that a 1986 USGS study of the Middle Fork Eel estimates 5,697 t/mi²/yr for all sources (which is considerably higher than all the other basins in the North Coast that EPA has investigated, possibly also reflecting differences in methodology), presumably for the period up to 1986, which is when the USGS study was completed. In the USFS analysis, only 1,918 t/mi²/yr from all sources is estimated for the highest-yielding period from the USFS analysis (1940-1969); the estimate is only 1,568 t/mi²/yr if considering the 1940-1984 period, which is probably the period closest to that of the USGS study. Thus, the USGS study estimates are 3-4 times higher than the USFS estimates for similar periods. An estimate of the North Fork Eel basin, including private land, which combined a USFS study for the USFS lands in the northern portion of the North Fork Eel and a study by PWA for EPA on the southern portion of that basin, including private lands, concludes that 300 t/mi²/yr was generated from about 1960 to 2000 for management-associated landslides, and 375 t/mi²/yr was generated from natural landslides. The estimate for the closest period in Middle Fork basin analysis (1940-2002) is 760 t/mi²/yr, with 30 t/mi²/yr associated with management. The estimates for the Middle Fork would be expected to be slightly higher, since it includes the 1955 flood as well as the 1964 flood. Thus, the estimates are similar in terms of the overall values for landslides – 790 t/mi²/yr for landslides in the Middle Fork, for 1940-2002, versus 675 t/mi²/yr for 1960-2002 in the North Fork. However, there is a noteworthy difference in the assignment of management associations, with only 30 t/mi²/yr assumed to be management-associated in the Middle Fork (4% of the total) and 300 t/mi²/yr assumed to be management-associated in the North Fork (44% of the total). EPA does not have data to compare the most recent period (1985-2002), but it is likely that a similar difference in the two basins would be found, given that estimates of management-associated landslides in the Middle Fork for the recent period total only 13 t/mi²/yr. This difference raises the question of whether the management associations were accurately characterized in the sediment source analysis. "Smaller sources," including gullies, roads, harvesting and grazing, accounted for 99 t/mi²/yr in the North Fork, with a basin-wide average of all sources during the period 1960-2002 of 1,229 t/mi²/yr (USEPA 2002). For the Middle Fork basin, again, the most comparable time period would be the entire study period, or 1940-2002. This would include landslides that would have been generated from the 1955 storm, so it would be expected to be larger. The USFS estimate of all sources for the period is 1,390 t/mi²/yr, which seems a reasonable comparison. However, the USFS study determined that only 36 t/mi²/yr during that period is attributable to management associations. Smaller road-related and harvest-related sediment accounted for only 6 t/mi²/yr in the Middle Fork Eel. Some of the differences may be accounted for because the USFS study on the Middle Fork did not include private lands for the smaller sources. The USFS estimate of landslide sediment yield on USFS land in the North Fork Eel basin for the period 1944-1998 totaled 154 t/mi²/yr, with only 8 t/mi²/yr from management associated slides (Appendix B). Presumably the study was conducted similarly to the analysis for the Middle Fork Eel. (The USFS estimate included in EPA's TMDL for the North Fork Eel (US EPA 2002) totaled 159 t/mi²/yr, with 17 t/mi²/yr from management.) This is even lower than the landslide estimate for the USFS lands on the Middle Fork Eel, thus raising the possibility that USFS methodologies for determining management associations are significantly different than other sediment source analyses conducted recently for North Coast basins. It is probable that management under the Northwest Forest Plan has resulted in reduced sediment generation from natural causes, as there is little USFS management taking place in the basin, and it is likely the USFS lands are managed successfully under the Northwest Forest Plan for reduced sediment input. But it is not clear whether some of the differences in the source analyses lie in USFS analytical methods versus methods of other investigators, and it is doubtful that those differences would be so large that sediment associated with management on both private and public lands would be so significantly lower for the Middle Fork Eel than that for the North Fork Eel, which (like the Middle Fork) also includes considerable land under the Northwest Forest Plan management, as well as some of the Yolla Bolly Wilderness. In the North Fork Eel, sediment associated with management accounts for nearly one third of the total. USFS estimates that management-associated sediment in the Middle Fork Eel accounts for only one percent of the total. EPA concludes that it is likely that some of the sediment that is characterized as natural in this study (including landslides) would be more appropriately characterized as management-associated. In fact, comparing the sediment
estimates to other basins in the vicinity that are geologically similar indicates that the estimate of management-associated sediment in this basin, both in terms of total quantity and percentage of total management-associated versus natural sediment generated, is significantly lower than any other basin in the North Coast that EPA has investigated for TMDL purposes. Estimates of sediment for the South Fork Trinity Basin, which is geologically similar, total 1,053 t/mi²/yr for the period 1944-1990, which is only slightly less than the overall total for the Middle Fork Eel. In the South Fork Trinity River, management accounts for about a third of the total sediment production. In Redwood Creek, which has a higher overall sediment load, 71% of the load is associated with management. In the Van Duzen River basin, 20% of the sediment load is associated with management. The basinwide estimates of the North Fork Eel and South Fork Trinity River are closest to those of the Middle Fork Eel; the next closest proportion of management-associated sediment is twenty times greater, in the Van Duzen River. ## **Regional Board Concerns With USFS Sediment Source Analysis** In addition to the concerns outlined above, Regional Board staff has expressed other concerns with the USFS sediment source analysis (B. McFadin, pers. comm., October 2003), summarized as follows: Regional Board staff believes that the USFS Source analysis underestimates management-associated sediment and overestimates bank erosion. Regarding management-associated sediment, Regional Board staff note that the method of estimating the extent of roads that drain to the stream network by sampling at road-stream crossings underestimates the true length of hydrologically connected road surfaces and thus could potentially underestimate road-related sediment production by a significant amount. Including only actively eroding channel in the bottom of road-related gullies could also significantly underestimate volumes from that source. Regional Board staff have also called out additional concerns about the assumptions that were made to extrapolate information from USFS roads to private lands. In general, USFS roads are in better condition than private roads, so an extrapolation of information or sediment-generation rates from USFS roads to private roads will result generally in an underestimate of sediment. Specifically, inboard ditches are much more prevalent on private roads, which leads to higher delivery of road-related surface erosion and road-related gullying. Many private roads are traveled more often and are used year-round, which drastically increases the rate of surface erosion, particularly during rainy winter months. Many USFS roads are closed in the winter. In addition, many private roads are built with lower road-stream crossing capacities, which would likely result in higher rates of road-stream crossing failures than on USFS roads. Furthermore, private roads are more numerous than the number that could have been estimated with USFS GIS coverages, and private roads are not generally maintained as well as USFS roads. All these factors, plus the concerns already described above for road-related and small sources, can combine to significantly underestimate the sediment delivery (B. McFadin, pers. comm. 2003). As a result of its own analysis, the Regional Board estimates that road surface erosion averages 40 t/mi²/yr, which is nearly an order of magnitude greater than that estimated by the USFS. They estimate that 64 t/mi²/yr are generated in the Mill Creek/Round Valley subarea on the western side of the basin, 45 t/mi²/yr in the area of the Middle Fork Eel from Black Butte River to Elk Creek (approximately USFS Williams/Thatcher subareas) and 18 t/mi²/yr in the Lower Middle Fork Eel (approximately USFS Elk Creek/Dos Rios subareas). These subareas represent approximately 42% of the watershed; the average rate of 40 t/mi²/yr is applied to the watershed as a whole. Regional Board Staff also re-estimated bank erosion, to correct an error in the application of Grouse Creek rates (Raines & Kelley, 1991) to the Middle Fork Eel basin. By applying the Grouse Creek rates proportionally to landslide delivery within the various periods, as Raines & Kelley (1991) had done for Grouse Creek (using Middle Fork Eel landsliding rates), Regional Board staff estimated bank erosion at 295 t/mi²/yr for the 1985-2002 period. To cross-check the estimate, Regional Board staff also estimated streamside sediment delivery based on estimated streambank dimensions, creep rates reported in the literature (1.75 mm/yr) and average soil depth of 1.5 meters. This method yielded an average of 210 t/mi²/yr for streambank erosion. Averaging the two values yields an estimate of about 250 t/mi²/yr, which is about half of the USFS estimate. Applying Regional Board estimates to the sediment source categories, Table 6 would be revised as shown in Table 7. Due to the uncertainty of both sediment source analysis methods, EPA specifically requests comments on the two sediment source analyses. Table 7: Regional Board Estimates of Revised Sediment Source Analysis Results 1985-2002 | Source | Load
t/mi²/yr | |---|----------------------------| | Natural Landslides | 364 | | Bank Erosion (revised estimate) | 250 | | Total Natural | 614 | | Road-Related Landslides | 5 | | Harvest-Related Landslides | 2 | | Other Road Sources (revised estimate) | 40 | | Harvest skid trails & landings | <1 | | Gullies | <1 | | Total Human-Related | 47+ | | TOTAL (revised estimate) | 661+ | | Percent of Management and Natural Sediment (revised estimate) | 93% natural, 7% management | #### 4.3. TMDL AND ALLOCATIONS ## 4.3.1. Loading Capacity and TMDL This TMDL will be set equal to the loading capacity of the Middle Fork Eel River. The TMDL is the estimate of the total amount of sediment, from both natural and human-caused sources, that can be delivered to streams in the Middle Fork Eel River watershed without exceeding applicable water quality standards. The approach taken focuses on sediment delivery, rather than a more direct measure of salmonid habitat (i.e. instream conditions.) Sediment delivery can be subject to direct management by landowners (for example, roads can be well maintained), whereas instream conditions (pool depth, percent fines) are subject to upstream management that may not be under the control of local landowners. While it would be desirable to be able to mathematically model the relationship between salmon habitat and sediment delivery, these tools are not available for watersheds with landslides and road failure hazards. Sediment movement is complex both spatially and temporally. Sediment found in some downstream locations can be the result of sediment sources far upstream. Instream sedimentation can also be the result of land management from decades past. Nevertheless, management activities can clearly increase sediment delivery, and instream habitat can be adversely affected by increased sediment inputs. Therefore, it is reasonable to link increases in sediment delivery to decreased stream habitat quality. The approach also assumes that salmon can be supported in streams even with the yearly variation of natural rates of erosion observed in the 20th century. Although the sediment delivered to the streams has varied over time, salmon have adjusted to the natural variability by using the habitat complexity created by the stream's adjustments to the naturally varying sediment loads. In addition, we are assuming that the natural amount of sediment can generally be increased to some extent and not adversely affect fish. We postulate this because historically, fish populations were thriving throughout the North Coast, even though there was human caused sediment from ranching, the tanbark industry and some logging. Because of the uncertainty related to the existing USFS source analysis, EPA is soliciting comments on two different methods of determining the loading capacity of the Middle Fork Eel and allocating those loads. These two methods are described below. Depending upon the comments that are received and any additional information that EPA obtains during the comment period, it is possible that EPA could choose either of these two alternative methods for the final TMDL, which must, under the consent decree, be completed by December 2003. Additionally, the USFS source analysis and the Regional Board's analysis may be revised or refined during the comment period. Therefore, as a result of such revised analyses, and/or additional data or comments received, EPA may determine that the appropriate loading capacity and allocations are different from either of the alternatives, although we would expect the final numbers to be close to the range of the alternatives on which we are soliciting comments. ## Alternative 1: TMDL based on Loading Capacity and Allocations From Neighboring Basins Under this alternative, EPA would use nearby streams for which TMDLs were completed in order to set the loading capacity and allocations for the Middle Fork Eel. This is a different approach from the approach we have used in many recent North Coast TMDLs, which has been to set the loading capacity based on an allowable percentage above natural loading. We are not proposing to employ that approach using the USFS source analysis calculations because of our concerns regarding the determination of management versus natural loading in the basin in the USFS analysis. As discussed in Section 4.2, it appears that an unknown portion of management-related sediment may have been incorrectly characterized as natural. Therefore, we are proposing as Alternative 1 an approach which is not dependent on the characterization in the USFS source analysis of natural v. management sediment loading. This alternative, however, is consistent with the overall sediment loading as determined
in the USFS source analysis. The overall sediment load in the Middle Fork Eel as determined in the USFS source analysis is similar to that in the North Fork Eel and the South Fork Trinity River. In addition, the geology is comparable and land uses are somewhat similar. In those basins, the distribution of management and natural sediment has been determined with greater accuracy. Therefore, EPA is proposing, in this alternative, to base the TMDL and allocations for the Middle Fork Eel basin on the determinations made in the North Fork Eel and South Fork Trinity River sediment TMDLs. Using the TMDL and allocations for these two basins would result in a slight decrease in sediment load for the Middle Fork Eel from that calculated in the USFS source analysis. This is appropriate, given that the basin overall is in relatively good condition in terms of sediment production, although there may be some areas where further improvement is needed. The loading capacity is calculated below, and the resulting allocations are shown in Table 8 and explained in Section 4.3.2 below. In this alternative, we are proposing to set the TMDL, or loading capacity, at 888 tons/mi2/year. This is the average of the TMDLs (loading capacities) we established in the North Fork Eel and South Fork Trinity TMDLs. We believe this is appropriate give the proximity of these basins, and the similarity in geology and land uses. We are also utilizing the North Fork Eel and South Fork Trinity TMDLs in determining allocations of the loading capacity, as discussed below in Section 4.3.2 and as set forth in Table 8. TMDL = Loading Capacity = average loading capacity for North Fork Eel River and South Fork Trinity River = $(1,039 + 737)/2 = 888 \text{ tons/mi}^2/\text{yr}$. Under the USFS source analysis, current loading for the Middle Fork Eel is estimated at 968 t/mi²/yr. Thus, the TMDL of 888 t/mi²/yr represents about a 9% reduction in overall sediment load. ### **Alternative 2: TMDL Based on Regional Board Revised Source Analysis** Under this alternative, EPA would use a method of setting allocations similar to that employed in other basins (e.g., North Fork Eel, Noyo, Big and Albion Rivers, USEPA, 2003, 1999, 2001 and 2001). It is based on the assumption that a certain amount of loading greater than what is natural is acceptable, and will still result in meeting water quality standards. Most of the basins in the North Coast historically had some management activity taking place in the basin, while fish populations remained stable. As discussed under Alternative 1 above, we are not employing this approach using the original USFS source analysis calculations because of our concerns regarding the USFS's determination of natural vs. management loading. However, we think that the refinements made by the Regional Board in the determination of natural vs. management loading address problems we found in the USFS analysis, and that the Regional Board's revised source analysis establishes a reasonable basis on which to calculate a TMDL for this basin. As Alternative 2, EPA proposes that the loading capacity and TMDL for the Middle Fork Eel basin be set at 105% of natural loading. Natural loading is estimated by the Regional Board to be 614 t/mi2/yr. Thus, TMDL = Loading Capacity = 105% of natural loading = 614 * 1.05 = 645 tons/mi²/yr. This is more conservative than the calculation we have used for some other basins, which, when using this method to determine loading capacity, have frequently been based on 125% of natural loading, or higher where it was clear that water quality standards would still be met, or the sediment source analysis underestimated natural loading. Such considerations do not apply in this basin. In this basin, EPA considers 105% to be appropriate based on consideration of several factors. Recovery from the 1955 and 1964 floods in parts of the basin has been extraordinarily slow and beneficial uses are in some cases still not supported. While the conditions in the Middle Fork Eel are not as bad as in many North Coast watersheds, it is not clear that additional capacity to carry new sediment loads exists. Furthermore, it is apparent that reducing sediment will also assist in achieving water quality standards for temperature and achieving the heat load proposed for the Temperature TMDL. Moreover, we do not expect that calling for a lower percentage of management loading than in other basins would be burdensome to landowners. Management activity is not high in the basin relative to other watersheds on the North Coast, and USFS management may have already resulted in extremely low management-related sediment loading. In addition, parts of the USFS lands are managed as wilderness and are not producing management-associated sediment, so setting the overall loading capacity at 105% is also not a burden on other landowners. #### 4.3.2. Allocations In accordance with EPA regulations, the loading capacity (i.e. TMDL) is allocated to the various sources of sediment in the watershed, with a margin of safety. That is: ``` TMDL = sum of "wasteload allocations" for individual point sources, + sum of the "load allocations" for nonpoint sources, and + sum of the "load allocations" for background sources ``` Although nonpoint sources are responsible for most sediment loading in the watershed, limited point sources may also discharge some sediment in the watershed. Current and prospective future point sources that may discharge in the watershed and are therefore at issue in this TMDL include: - -CalTrans facilities (e.g., State Highway 162) that discharge pursuant to the CalTrans statewide NPDES permit issued by the State Water Resources Control Board, and - -Construction sites larger than 5 acres that discharge pursuant to California's NPDES general permit for construction site runoff. Because the discharge from these point sources cannot be readily determined, and because possible loading from point sources is not distinguished from general management-related loading in the source analysis, EPA considers the rates set as load allocations (i.e., for nonpoint sources) to also represent wasteload allocations (i.e., for those point sources that would be covered by general NPDES permits). There are no other wasteload allocations, as there are no other individual point sources of sediment in the basin. Allocations for the two Sediment TMDL alternatives are proposed below. Again, EPA specifically requests comment on these two alternatives. The alternative load allocations for the Middle Fork Eel River Sediment TMDL are presented in Table 8 and Table 9. The allocations clarify the relative emphasis and magnitude of erosion control programs that need to be developed during implementation. The load allocations are expressed in terms of yearly averages (tons/mi²/yr). They could be divided by 365 to derive daily loading rates (tons/mi²/day), but EPA is expressing them as yearly averages, because sediment delivery to streams is naturally highly variable on a daily basis. In fact, EPA expects the load allocations to be evaluated on a ten-year rolling average basis, because of the natural variability in sediment delivery rates. In addition, EPA does not expect each square mile within a particular source category throughout the watershed to necessarily meet the load allocation; rather, EPA expects the average for the entire source category to meet the load allocation for that category. #### Allocations for Sediment TMDL Alternative 1 As discussed above, TMDL Alternative 1 is calculated based on neighboring basins. The allocations for this alternative are shown in Table 8. These allocations were calculated as follows: first, the overall TMDL is the average of the North Fork Eel and South Fork Trinity TMDLs. The allocation of natural sediment is derived similarly. Thus, the natural sediment load is estimated to be $(830 + 682) / 2 = 756 \text{ t/mi}^2/\text{yr}$. Although this number is lower than the calculation for natural sediment delivery in the USFS source analysis, we are not suggesting that natural sediment be reduced. Rather, this number provides an estimate of what is more likely to be the sediment load than that represented by the USFS source analysis, based on our concerns with the source analysis outlined above. The remaining load to allocate is the total load (888 t/mi²/yr) less the natural load (756 t/mi²/yr), or 132 t/mi²/yr. Because the uncertainty in this TMDL is high, EPA has determined that an explicit Margin of Safety (MOS) is appropriate. The MOS is 25% of the total remaining load, or 33 t/mi²/yr, and is unallocated to any specific source. This is also consistent with averaging the allocations in the North Fork Eel and South Fork Trinity TMDLs: the MOS of 33 t/mi²/yr in the Middle Fork Eel TMDL is approximately the average of the MOS allocations for the North Fork Eel (0 t/mi²/yr) and South Fork Trinity (63 t/mi²/yr). (The MOS is expressed in the South Fork Trinity as a negative number allocated to management; in the Middle Fork Eel it is expressed more clearly as a separate allocation, and the load has already been subtracted from the management sources.) After subtracting the MOS of 33 t/mi²/yr, 99 t/mi²/yr is left to be allocated to management sources. Management allocations have been simplified for this TMDL into management-related landslides and smaller sources. This relatively small management allocation reflects the fact that relatively little management is currently taking place in the basin, and takes into consideration EPA's obligation to assign allocations that err on the side of water quality protection in the face of uncertainty. This represents about a 9% overall load reduction from USFS estimates of current loading. The 99 t/mi²/yr is allocated primarily to landslides (77 t/mi²/yr), which are more difficult to control than smaller sources (20 t/mi²/yr). The numbers identified as current loading in Table 8 are those from the USFS's
source analysis. Although it appears from Table 8 that the allocations allow an increase over the existing management-related sediment load as determined in the USFS source analysis, we believe that in reality this reflects a small decrease in the management-related load, which is probably much higher than 13 t/mi²/yr determined by the source analysis, although it is likely not as high as the existing loads for the North Fork Eel and South Fork Trinity Rivers. Given that the allocations are adequately protective for those basins, we consider that they similarly would be adequately protective of the Middle Fork Eel. **Table 8: Sediment TMDL Alternative 1: TMDL and Allocations** (tons/mi²/yr) | SOURCE | Current
Loading | North Fork Eel
Allocations | South Fork Trinity
River Allocations | Middle Fork Eel
TMDL &
Allocations | |---|--------------------|-------------------------------|---|--| | Natural Landslides & Bank
Erosion | 968 | 830 | 682 | 756 | | Management Landslides
Management Small Sources | 7
6 | 156
53 | 98
20 | 77
22 | | SUBTOTAL MANAGEMENT | 13 | 209 | 118 | 99 | | Margin of Safety | | | (63)* | 33 | | TOTAL LOAD | 981 | 1,039 | 737 | 888 | Note: Current loading is as determined in the USFS source analysis. The total allowable load is determined as an average of the total loads for North Fork Eel and South Fork Trinity Rivers. By averaging North Fork Eel and South Fork Trinity River current loading/allocations. EPA believes that this more accurately reflects current natural loading for the Middle Fork Eel. For the remaining load, 25% is allocated to MOS. Waste Load allocation is 0, other than minor sources covered by NPDES permits for CalTrans and construction sites less than 5 acres that are assumed to be covered by nonpoint sources (see text). ^{*}The MOS is expressed in the South Fork Trinity as a negative number allocated to management; in the Middle Fork Eel it is expressed more clearly as a separate allocation, and the load has already been subtracted from the management sources. #### Allocations for Sediment TMDL Alternative 2 The allocations shown in Table 9 are based on the Regional Board's revised sediment source analysis. Thus the "current load" in Table 9 refers to the current load as calculated in the Regional Board's source analysis. The allocations were determined as follows: As discussed above, the loading capacity and TMDL are proposed in this alternative to be set at 645 t/mi²/yr. The remaining load to allocate is the total load (645 t/mi²/yr) less the natural load (614 t/mi²/yr), or 31 t/mi²/yr. Because the uncertainty in this TMDL is high, EPA has determined that an explicit Margin of Safety (MOS) is appropriate. The MOS is 25% of the total remaining load, or 8 t/mi²/yr, and is unallocated to any specific source. This is the same proportion that was allocated to MOS for Alternative 1. After subtracting the MOS of 8 t/mi²/yr, 23 t/mi²/yr is left to be allocated to management sources. This represents about a 2% decrease in loading overall, and a 51% decrease in management loading over the Regional Board's estimates of current loading. This management load is allocated similarly to Alternative 1: Management allocations have been simplified into management-related landslides and smaller sources. This relatively small management allocation reflects the fact that relatively little management is currently taking place in the basin, and takes into consideration EPA's obligation to assign allocations that err on the side of water quality protection in the face of uncertainty. The 23 t/mi²/yr is allocated primarily to landslides (18 t/mi²/yr), which are more difficult to control than smaller sources (5 t/mi²/yr). As with Alternative 1, the allocation for landslides is about 60% of the remaining load, with the smaller sources allocated what is left of management sources. As is apparent from Table 9, these allocations require a reduction from the current overall management-related loading as determined by the Regional Board. However, we acknowledge that our calculations appear to allow an increase in management-related loading from landslides. This results from our decision to provide more stringent allocations for the smaller sources because we consider them to be easier to control. There also remains uncertainty in the revised source analysis concerning management-related landslides. We anticipate that the Regional Board may refine its source analysis, and may determine in a future iteration of this TMDL that it is more appropriate to allocate the management load amongst the individual sources differently. **Table 9: Sediment TMDL Alternative 2: TMDL and Allocations** (tons/mi²/yr) | SOURCE | Current
Loading | Middle Fork Eel
TMDL &
Allocations | |---|--------------------|--| | Natural Landslides & Bank
Erosion | 614 | 614 | | Management Landslides
Management Small Sources | 7
40 | 18
5 | | Management Sman Sources | 40 | , and the second | | SUBTOTAL MANAGEMENT | 47 | 23 | | Margin of Safety | | 8 | | TOTAL LOAD | 661 | 645 | ### 4.3.3. Margin of Safety The margin of safety must be included in a TMDL to account for uncertainties concerning the relationship between pollutant loads and instream water quality and other uncertainties in the analysis. The margin of safety can be incorporated into conservative assumptions used to develop the TMDL, or added as an explicit separate component of the TMDL. Both alternatives in this TMDL include an implicit margin of safety based on EPA's conservative assumptions regarding the uncertainty associated with the Forest Service's sediment source analysis. Additionally, they both include an explicit margin of safety of 25% of the total management allocation, or 33 t/mi²/yr for Alternative 1 and 8 t/mi²/yr for Alternative 2. In Alternative 1, in order to deal with the uncertainty associated with the sediment source analysis, an implicit margin of safety is provided by selecting comparable basins with very low allocations to use in determining appropriate allocations for this basin. These measures were taken despite anecdotal information from land managers and regulators familiar with the basin (i.e., USFS and RWQCB staff) that the basin is in relatively good condition regarding its sediment load. EPA also considered the lack of instream and watershed data, other than the source analysis, in making these conservative assumptions. For Alternative 2, an implicit MOS is also included by setting the loading capacity conservatively, at 105% of natural loading. Because the loading capacity and allocations under Alternative 2 are lower than under Alternative 1, this can be considered an additional margin of safety for that alternative. Given these implicit margin of safety considerations in Alternative 2, EPA is specifically soliciting comments on whether the explicit margin of safety is necessary under this alternative. #### 4.3.4. Seasonal Variation and Critical Conditions The TMDL must describe how seasonal variations were considered. Sediment delivery in the Middle Fork Eel River watershed inherently has considerable annual and seasonal variability. The magnitudes, timing, duration, and frequencies of sediment delivery fluctuate naturally depending on intra- and inter-annual storm patterns. Since the storm events and mechanisms of sediment delivery are largely unpredictable year to year, the TMDL and load allocations are designed to apply to the sources of sediment, not the movement of sediment across the landscape, and to be evaluated on a ten-year rolling average basis. EPA assumes that by controlling the sources to the extent specified in the load allocations, sediment delivery will occur within an acceptable range for
supporting aquatic habitat, regardless of the variability of storm events. EPA also intends that the allocations be determined on a 10-year rolling average, to account for inherent inter-annual variation. The TMDL must also account for critical conditions for stream flow, loading, and water quality parameters. Rather than explicitly estimating critical flow conditions, this TMDL uses indicators which reflect net long term effects of sediment loading and transport for two reasons. First, sediment impacts may occur long after sediment is discharged, often at locations far downstream of the sediment source. Second, it is impractical to accurately measure sediment loading and transport, and the resulting short term effects, during the high magnitude flow events that produce most sediment loading and channel modifications. #### CHAPTER 5: IMPLEMENTATION AND MONITORING MEASURES The main responsibility for water quality management and monitoring resides with the State. EPA fully expects the State to develop and submit implementation measures to EPA as part of revisions to the State water quality management plan, as provided by EPA regulations at 40 C.F.R. Sec. 130.6. The State implementation measures should contain provisions for ensuring that the load allocations in the TMDL will in fact be achieved. These provisions may be non-regulatory, regulatory, or incentive-based, consistent with applicable laws and programs, including the State's recently upgraded nonpoint source control program. For the Temperature TMDL, the State may want to consider using the management scenarios developed for the model (18-24" dbh) to assist in considering the effects of more intensive management than what is occurring at present, and determine appropriate measures to prevent additional management-related heat load from raising stream temperatures further. EPA recommends that implementation programs be developed using site specific information for protection or achievement of "natural potential" shade. The data, analysis and model used for the TMDL provide justification for the protection or achievement of natural potential shade, as well as the required TMDL loading capacity and allocations calculations. But actual protection or changes toward achievement of natural potential shade may best be determined, not by modeled levels, but by either field review or an analysis of ownership-wide management of the riparian zone. It may be that parts of the basin are already meeting the TMDL, and USFS and the State can concentrate their efforts on areas where temperatures are not achieving natural potential shade. EPA recommends that the State develop additional information in support of changes in management actions or for any changes they wish to consider for the 2004 listing cycle. For the Sediment TMDL, EPA specifically recommends that more instream sediment information be gathered throughout the basin. EPA also suggests that the State consider additional review and revision, if necessary, of the sediment source analysis, and consider using the information developed from it in setting priorities for any new sediment reduction programs in the watershed. This could be done in conjunction with USFS, to make use of work that has already been completed for the basin. EPA's analysis suggests that parts of the basin, particularly within USFS lands, may already be meeting the TMDL; if that is the case, no changes in current management may be needed on those lands. However, EPA emphasizes that those lands will only continue to meet sediment limits if future management practices and the intensity of management are not increased over the recent past. In addition, the State may wish to consider under what criteria delisting of USFS lands in the Middle Fork Eel—or other lands that are meeting standards—can take place, and work cooperatively with USFS experts on a monitoring plan. A monitoring plan should take into account number of samples, location of samples, sampling strategy and cost-effectiveness. USFS and the State can concentrate their efforts on those areas that still need reduction programs. USFS current standards and guides under the Northwest Forest Plan currently protect riparian areas from the effects of timber harvest on adjacent sediment and temperature characteristics. Thus, in theory, the Northwest Forest Plan already protects natural potential shade In this case, EPA does not believe it is necessary to prove on a site specific basis that natural shade is protected. Any implementation and monitoring strategy should include a public participation process and appropriate recognition of other relevant watershed management processes, such as local source water protection programs, State programs under Section 319 of the Clean Water Act, or State continuing planning activities under Section 303(e) of the Clean Water Act. EPA encourages the State and landowners to work together to fully develop an implementation and monitoring strategy that is appropriate for a watershed with a lower human caused disturbance than other watersheds. #### **CHAPTER 6: PUBLIC PARTICIPATION** EPA provided public notice of the draft Middle Fork Eel River Temperature and Sediment TMDLs by placing a notice in the Willits News and Santa Rosa Press Democrat, papers of general circulation in Mendocino and Trinity Counties. In addition, EPA sent a notice to those on the mailing list of the Upper Eel Watershed Forum, and will be present at a public meeting that coincides with an Upper Eel Watershed Forum membership, in order to make the meeting as convenient as possible to the greatest number of people in this sparsely-populated watershed. The public meeting will be held at 7 pm October 16 at the Masonic Hall in Covelo, California. EPA will review all written comments that are received before the end of the public comment period, which will run from October 15-November 17, 2003. EPA will prepare written responses to written comments on the draft TMDLs received by EPA through the close of the comment period. For further questions or clarification, please contact: Janet Parrish U.S. Environmental Protection Agency WTR-2 75 Hawthorne St San Francisco, CA 94105 415/972-3451 parrish.janet@epa.gov #### References Berman, 1998. Oregon Temperature Standard Review. U.S. EPA, Region 10. Seattle, WA. Brown, C. November 1976. "Estimates of Standing Stocks of Juvenile Steelhead in the North Fork of the Middle Fork Eel River, 1976" Region 1 Contract Services Section 76-5, Department of Water Resources. Brown, C. and P. Moyle. 1988. California Department of Fish and Game (CDFG). 1995 & 1996. Salmon and Steelhead Restoration and Enhancement Program, Stream Inventory Reports. o California Department of Fish and Game (CDFG). August 1980. Summer Steelhead Management Plan Middle Fork of the Eel River. California Department of Fish and Game (CDFG). January 1976. Observations on the Downstream Migrations of Anadromous Fishes within the Eel River System. Memorandum Report. o California Department of Fish and Game (CDFG). 1972. Puckett, L.K. 1973. "Sport Fisheries of the Eel River, 1972-1973." California Department of Fish and Game (CDFG). 1965. California Wildlife Plan. Vol. III. Supporting Data. Part B. Inventory Salmon-Steelhead & Marine Resources. p. 385. California Department of Fish and Game (CDFG)-Water Pollution Control Laboratory. 1996. California stream bioassessment procedure. Rancho Cordova, CA. Chapman, D.W. 1988. Critical review of variables used to define effects of fines in redds of large salmonids. Transactions of the American Fisheries Society. Volume 117, No. 1. Department of Water Resources, State of California (DWR). October 1982. Middle Fork Eel River Watershed Erosion Investigation. DWR, Northern District - Red Bluff, CA. Department of Water Resources, State of California (DWR). September 1966. Bulletin 136, North Coastal Area Investigation. Appendix: A Watershed Management in the Eel River Basin. Appendix C: Fish and Wildlife. Harrelson, C.C., C.L. Rawlins, and J.P. Potyondy. 1994. Stream channel reference sites: an illustrated guide to field technique. USDA Forest Service, General Technical Report RM-245. Flosi, Gary, S. Downier, J. Hopelain, M. Bird, R. Coey and B. Collins. 1998. California salmonid stream habitat restoration manual, third edition. California Department of Fish and Game. Inland Fisheries Division. Sacramento, CA. Knopp, Chris. 1993. Testing indices of cold water fish habitat. North Coast Regional Water Quality Control Board and California Department of Forestry, Santa Rosa. CA. Kondolf, G.M. 2000. Assessing salmonid spawning gravel quality. Transactions of the American fisheries Society 129:262-281. Kubicek, P.F. August 1977. "Summer Water Temperature Conditions in the Eel River System, with reference to Trout and Salmon". Masters Thesis, Humboldt State University. Jones. W. 2000. Draft California Coastal Salmon and Steelhead Current Stream Habitat Distribution Table. NMFS California Anadromous Fish Distributions. Lisle 1981. x Lisle, Thomas E. 1989. Sediment transport and resulting deposition in spawning gravels, north coastal California. Water Resources Research. Vol. 25., no. 6. Pp. 1303-1319. June. Lisle, T.E.. and S. Hilton. 1992. The volume of fine sediment in pools: an index of sediment supply in gravel bed streams. Water Res. Bulletin. 28:2. Paper No. 981120. April 1992. National Marine Fisheries Service (NMFS). February 20, 2003. Draft Report. "Preliminary Conclusions regarding the updated status of listed ESUs of West Coast salmon and steelhead, B. Steelhead Trout". Northwest Fisheries Science Center. Seattle, WA. Nielsen, J., and T. Lisle. (1994) "Thermally Stratified Pools and their use by Steelhead in Northern California Streams" Transactions of the American Fisheries Society 123:613-626 North Coast Regional Water Quality Control Board (NCRWQCB). 2002. Action Plans for the Albion River, Big River, Noyo River, and Ten Mile River Sediment
TMDLs. North Coast Regional Water Quality Control Board (NCRWQCB). 2001. Water Quality Control Plan for the North Coast Region. Last amended June 28, 2001. Oregon Department of Environmental Quality (ODEQ). June 1995. 1992 - 1994 Temperature Water Quality Standards Review Sigler, J.W., T.C. Bjornn and F.H. Everest. 1984. Effects of chronic turbidity on density and growth of steelheads and coho salmon. Transactions of the American Fisheries Society 113:142-150. Smith and Elwell. Spence, B.C. et al. 1996. An ecosystem approach to salmonid conservation. TR-4501-96-6057. ManTech Environmental Research Services Corp. Corvalis, OR. Sullivan, K., D.J. Martin, R.D. Cardwell, J.E. Toll, and S. Duke. December 2000. "An analysis of the Effects of Temperature on salmonids of the Pacific Northwest with implications for selecting temperature criteria "Sustainable Ecosystems Institute, Portland, OR. Tappel, P.D. and T.C. Bjornn. 1983. A new method of relating size of spawning gravel to salmonid embryo survival. Idaho Cooperative Fishery Research Unit. North American Journal of Fisheries Management 2:123-135. US Environmental Protection Agency (USEPA), Region 10. 2001a. Technical Synthesis Scientific Issues Relating to Temperature Criteria for Salmon, Trout and Char native to the Pacific Northwest. EPA 910-R-01-007. August 2001 US Environmental Protection Agency (USEPA), Region 10. 2001b. Issue Paper 5. Summary of Technical Literature Examining the Physiological Effects of Temperature on Salmonids. EPA-910-01-005. May 2001 US Environmental Protection Agency (USEPA). 2002. North Fork Eel River total Maximum Daily Loads for Sediment and Temperature. San Francisco, CA. December 2002. US EPA. 2000. Big River total Maximum Daily Load for Sediment. San Francisco, CA. December 2000. P32 US EPA. 1999. Noyo River TMDL for Sediment. San Francisco, CA. US EPA. 1998. South Fork Trinity river and Hayfork Creek sediment total maximum daily loads. Region IX Water Division. San Francisco, CA. December 1998. USDA Forest Service (USFS). 1999. Roads Analysis: Informing Decisions about managing the National Forest Transportation System. Misc. Rep. FS-643. Washington, D.C.: U.S. Dept. of Agriculture Forest Service. 222 p. United States Department of Agriculture, Forest Service. July 1996. Watershed Analysis Report Black Butte River Watershed. Mendocino National Forest, Willows, CA. United States Department of Agriculture, Forest Service. 1996. A Field Guide to the Tanoak and the Douglas-fir Plant Associations in Northwestern California. R5-ECOL-TP-009. Six Rivers National Forest, Eureka, CA. United States Department of Agriculture, Forest Service. September 1994. Watershed Analysis Report for the Middle Fork Eel River Watershed. United States Department of Agriculture, Forest Service. September 1995. Keter, T. Environmental History and Cultural Ecology of the North Fork Eel River Basin, California. USDA, Forest Service. R5-EM-TP-002. United States Fish and Wildlife Service. February 1994. Fisheries Investigations for Round Valley Indian Reservation, Covelo, California. Arcata, CA. Washington State Department of Ecology (WDOE). December 2000. Evaluating Standards for Protecting Aquatic Life in Washington's Surface Water Quality Standards Temperature Criteria. 00-10-070 Weaver, W.E. and D.K. Hagans. 1994. Handbook for forest and ranch roads: a guide for planning, designing, constructing, reconstructing, maintaining and closing wildland roads. Prepared for the Mendocino County Resource Conservation District, Ukiah, CA, in cooperation with the California Department of Forestry and Fire Protection and the USDA Soil Conservation Service. #### **Personal Communications** Faust, R. USFS. October 2003. Communications with Janet Parrish. Hope, D. and Feiler, S. NCRWQCB. 2003. Communications with Palma Risler. Leland, D. NCRWQCB. October 2003. Communications with Janet Parrish. McFadin, B. NCRWQCB. October 2003. Communications with Janet Parrish. ## **APPENDICES** **Appendix A: Temperature Modeling** available as a separate document **Appendix B: USFS Sediment Source Analysis** available as a separate document